CS46 practice problems 5

These practice problems are an opportunity for discussion and trying many different solutions. They are **not counted towards your grade**, and **you do not have to submit your solutions.** The purpose of these problems is to get more comfortable with CFGs, PDAs, and the pumping lemma for context-free languages.

1. Use the pumping lemma for context-free languages to show that the following language over $\Sigma = \{a, \#\}$ is not context-free:

$$\{a^n \# a^{2n} \# a^{3n} \mid n \ge 0\}$$

- 2. Let $L_{\text{eq-len}} = \{x \# y \mid |x| = |y|\}$, where $x, y \in \{a, b\}^*$.
 - (a) Design a grammar for $L_{\text{eq-len}}$.
 - (b) Describe a PDA for $L_{\text{eq-len}}$.
- 3. Let $L_{\text{neq-len}} = \{x \# y \mid |x| \neq |y|\}$, where $x, y \in \{a, b\}^*$.
 - (a) Design a grammar for $L_{\text{neq-len}}$.
 - (b) Describe a PDA for $L_{\text{neq-len}}$.
- 4. Let $L_{eq} = \{x \# y \mid x = y\}$, where $x, y \in \{a, b\}^*$.

Show that L_{eq} is not context-free using the pumping lemma for context-free languages.

- 5. Let $L_{\text{neq}} = \{x \# y \mid x \neq y\}$, where $x, y \in \{a, b\}^*$.
 - (a) First, design a grammar or PDA for the language $\{a^{p}b^{q}b^{p}a^{q} \mid p,q \ge 0\}$. (Hint: it should be pretty simple.)
 - (b) (Hint step. Next, figure out how to break up L_{neq} into subsets. Some subsets you should already have solved (above). For the remaining subset, find a way to write it which looks a lot like part (a).)
 - (c) Design a grammar for L_{neq} .
 - (d) Describe a PDA for L_{neq} .
- 6. Use the pumping lemma for context-free languages to show that

 $\{w \# t \mid w \text{ is a substring of } t, \text{ and } w, t \in \{a, b\}^*\}$

is not context-free.

- 7. If A and B are languages, define $A \diamond B = \{xy \mid x \in A \text{ and } y \in B \text{ and } |x| = |y|\}$.
 - (a) Show that if A and B are regular languages, then $A \diamond B$ is a context-free language. You will probably want to describe a PDA instead of a grammar, and use nondeterminism. You do not need to give a completely formal definition of your PDA, but instead describe at a high level how it works.

- (b) If A and B are regular languages, is $A \diamond B$ regular? If so, give a proof. If not, give an example of two regular languages A and B for which $A \diamond B$ is not regular, and prove your claim.
- (c) (challenge) If A is regular and B is context-free, what can you say about $A \diamond B$? Is it regular? Is it context-free?

Extra practice problems!

We now have a reasonable collection of interesting problems. For each of these languages that we've encountered recently, is it

- (i) regular?
- (ii) context-free, but not regular?
- (iii) not even context-free?

Support your choice with a construction or proof. (You may have already done parts of this problem in the course of last week's lab/homework.) Remember that we have many labor-saving theorems and already-proven facts that you can cite. If you've already done a proof using a pumping lemma, try to do it again with closure properties.

8. $L_1 = \{w\overline{w} \mid \overline{w} \text{ is } w \text{ with all } as \text{ flipped to } bs \text{ and all } bs \text{ flipped to } as \}$ where $\Sigma = \{a, b\}$.

9.
$$L_2 = \{a^k u a^k \mid k \ge 1 \text{ and } u \in \Sigma^*\}$$
 where $\Sigma = \{a, b\}$.

- 10. $L_3 = \{a^k b u a^k \mid k \ge 1 \text{ and } u \in \Sigma^*\}$ where $\Sigma = \{a, b\}$.
- 11. $L_4 = \{w \mid w \text{ is unary for } 10^n \text{ for some } n \ge 0\}$ where $\Sigma = \{1\}$.
- 12. $L_5 = \{w \mid w \text{ is decimal for } 10^n \text{ for some } n \ge 0\}$ where $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- 13. $L_6 = \{a^n b^m a^m b^n \mid m, n \ge 0\}$ where $\Sigma = \{a, b\}$.
- 14. $L_7 = \{a^{m-n} \mid \frac{m}{n} = 5\}$ where $\Sigma = \{a, b\}$.
- 15. $L_8 = \{a^m b^n \mid m \text{ and } n \text{ are prime factors of some integer } \leq 2020\}$ where $\Sigma = \{a, b\}$.
- 16. $L_9 = \{w \mid w \text{ is not a palindrome}\}\$ where $\Sigma = \{a, b\}.$
- 17. $L_{10} = \{w \mid w = x_1 \# x_2 \# \cdots \# x_k \text{ for } k \ge 0, \text{ each } x_i \in L(a^*), \text{ and } x_i \ne x_j \text{ for } i \ne j\}, \text{ where } \Sigma = \{a, \#\}.$