W9L3 decidability and reductions

Friday, April 3, 2020 9:14

So far we have A_{TM} and $HALT_{TM}$ which are both undecidable but recognizable.

In your book, they discuss:

- $E_{TM} = \{ < M > | M \text{ is a Turing machine and } L(M) = \emptyset \}$
- $REGULAR_{TM} = \{ < M > | M \text{ is a Turing machine and } L(M) \text{ is a regular language} \}$
- $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are Turing machines and } L(M_1) = L(M_2) \}$
- $ALL_{CFG} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \Sigma^* \}$... and prove that all of these are not decidable.

<u>Claim: E_{TM} is undecidable.</u>

Proof: (by contradiction)

S'pose that E_{TM} is decidable, and is decided by some decider R.

Want to show how to build a decider for A_{TM} using R as a subroutine (this will be our contradiction).

Build S = "On input < M, w > where M is a Turing machine and w is a string:

- 1. Build a new Turing machine N₁.
 - $N_1 =$ "on input x:
 - a. If x ! = w then reject.
 - b. If x = w then run *M* on input *w* and do the same."
- 2. Run *R* on input $< N_1 >$.
- 3. If R accepts, reject. Else, accept."

Need to check:

- Is S a decider?
- Yes: it has 3 lines; line 1 definitely halts, line 2 halts because R is a decider, and line 3 halts and returns accept/reject, so overall S is a decider.
- If $< M, w > \in A_{TM}$ then we know that M accepts string w. N_1 will reject all other strings, but accepts w, so $L(N_1) = \{w\}$. So on line 2, R will reject $\langle N_1 \rangle$, so on line 3, S accepts!
- If < M, w > is not in A_{TM} and M does not accept w, N_1 will accept no strings, so $L(N_1) = \emptyset$. So on line 2, R will
- accept $< N_1 >$, so on line 3, S will reject.
- If < M, w > is not in A_{TM} because it is a bad encoding. Then N_1 does some weird behavior because M and ware a bad encoding, but it definitely doesn't accept ever, so $L(N_1) = \emptyset$, so again R will accept $\langle N_1 \rangle$ and so on line 3. S will reject.

So we have built a decider S for A_{TM} , but we know that A_{TM} is not decidable! $\Rightarrow \leftarrow \Box$

We have R to distinguish

ØC

is either

between these 2 cases (quit or \$) & use it to figure out the answer for the ATM problem (Maccepts w or doesn't).

) is either

M haltson w

n2n2 or

91

& use it to figure out the anoner

Define CONTEXTFREE_{TM} = {< M > | M is a Turing machine and L(M) is a context-free language}

Claim: CONTEXTFREE_{TM} is undecidable.

Proof: (by contradiction)

S'pose that $CONTEXTFREE_{TM}$ is decidable, and is decided by some decider R.

Want to show that we can build a decider for $HALT_{TM}$ using R as a subroutine (this will be our contradiction).

Build S = "On input < M, w > where M is a Turing machine and w is a string:

1. Build a new Turing machine N₂:

- N_2 : "On input x:
 - a. If $x = 0^n 1^n 2^n$ for some *n*, accept.
 - b. Else, run *M* on input *w*.
- c. Accept." 2. Run R on $< N_2 >$ and do the same."

Need check:

- *S* is a decider. Line 1 finishes and line 2 runs a decider, so it also finishes.
- If $< M, w > \in HALT_{TM}$ then M halts on w. So N_2 will accept Σ^* , which is context-free, so R will accept $< N_2 > N_2$ so S will also accept.
- If < M, w > is not in $HALT_{TM}$ and M loops on w, then N_2 will accept strings in $\{0^n 1^n 2^n\}$ and loop on all other strings, so $L(N_2)$ is not context-free. So R will reject $\langle N_2 \rangle$, so S will also reject.
- If < M, w > is not in *HALT*_{TM} and is badly formatted, then we should specify either (I) "when you try to run something that's not a TM on line (b), you loop forever" or (II) "when you try to run something that's not a TM on line (b), you reject". Then N_2 accepts $\{0^n 1^n 2^n\}$ and loops/rejects all other strings, so again $L(N_2)$ is We have R to distinguish between these ({or 12n3 or 51*) not context-free, so *R* will reject $< N_2 >$ so *S* will also reject.
- So *S* is a decider for $HALT_{TM}$, but $HALT_{TM}$ is undecidable! $\Rightarrow \leftarrow \Box$

Lecture notes Page 1

