
Idea: let's build a decider which is not 𝑀ଵ, not 𝑀ଶ, etc.
Here's a new decider B.

Run the shortlex enumerator for Σ∗ until it prints 𝑠௜ = 𝑤.1.
Run the enumerator for 𝐴 until it prints the 𝑖௧௛ machine, 𝑀௜.2.
Run 𝑀௜ on input 𝑤. Do the opposite."3.

B = "On input string 𝑤,

Things to check:
- B is a decider: Line 1 will finish, line 2 will also finish. We know that 𝑀௜ is a decider, so line 3 also
finishes.
- 𝐿(𝐵) is not equal to 𝐿(𝑀ଵ), 𝐿(𝑀ଶ), …: Consider some arbitrary 𝑗. If 𝑠௝ ∈ 𝐿൫𝑀௝൯ then 𝑀௝ accepts 𝑠௝, so

B will reject 𝑠௝, so the languages are different. If 𝑠௝ is not in 𝐿൫𝑀௝൯ then 𝑀௝ rejects 𝑠௝, so B will accept

it, so the languages are different. □

𝐴்ெ = { < 𝑀, 𝑤 > | M is a Turing machine which accepts string 𝑤}
We know: 𝐴்ெ is not decidable, but it is recognizable.

Theorem: A language is decidable if and only if it is both recognizable and co-recognizable.

Def: A language 𝐿 is co-recognizable if 𝐿⎯⎯
is recognizable.

Claim: 𝐴
⎯⎯

்ெ is not recognizable.
Pf: (by contradiction)
If it were recognizable, then 𝐴்ெ would be both recognizable (from before) and co-recognizable
(from this assumption), so then by the theorem, 𝐴்ெ is decidable. But it's not! □

W9L2 decidability, the halting problem, constructions
Wednesday, April 1, 2020 9:19

 Lecture notes Page 1

(from this assumption), so then by the theorem, 𝐴்ெ is decidable. But it's not! □

Decidable languages are ones where a TM can say either "yes" or "no", definitively.
Recognizable languages are one where a TM can say "yes" but if the answer is "no" they might loop.
Co-recognizable languages are ones where a TM can say "no" but if the answer is "yes" they might loop.

Run 𝑀 on input 𝑤.1.
Accept."2.

G = "On input <𝑀, 𝑤> where 𝑀 is a Turing machine, 𝑤 is a string:

G is a recognizer for 𝐻𝐴𝐿𝑇்ெ:
If < 𝑀, 𝑤 >∈ 𝐻𝐴𝐿𝑇்ெ then 𝑀 halts on 𝑤, so G will finish line 1 and get to line 2, and accept. Thus
𝐻𝐴𝐿𝑇்ெ ⊆ 𝐿(𝐺).
If G accepts < 𝑀, 𝑤 > then G reached line 2, so line 1 must have finished. Thus 𝑀 halted on 𝑤. So <
𝑀, 𝑤 > ∈ 𝐻𝐴𝐿𝑇்ெ, so 𝐿(𝐺) ⊆ 𝐻𝐴𝐿𝑇்ெ. □

Proof: (by contradiction)
Assume that 𝐻𝐴𝐿𝑇்ெ is decidable, and is decided by some TM called 𝑅.
We will show how, using 𝑅, to build a decider 𝑆 for 𝐴்ெ (this will be our contradiction!).

Run 𝑅 on input <𝑀, 𝑤>. If 𝑅 rejects, we also reject.1.
If 𝑅 accepts, then run 𝑀 on input 𝑤.2.
If 𝑀 accepted, accept. Else, if 𝑀 rejected, reject."3.

Build 𝑆 = "On input <𝑀, 𝑤> where 𝑀 is a Turing machine and 𝑤 is a string:

𝑆 is a decider: line 1 finishes because 𝑅 is a decider. Line 2 finishes, if we run it, because the only way we
run it is if we already know (from 𝑅) that 𝑀 will halt on 𝑤. Line 3 also halts.

If <𝑀, 𝑤>∈ 𝐴்ெ then 𝑀 accepts 𝑤 so 𝑀 halts on 𝑤, so on line 1, 𝑅 accepts; on line 2, 𝑀 accept, on

 Lecture notes Page 2

If <𝑀, 𝑤>∈ 𝐴்ெ then 𝑀 accepts 𝑤 so 𝑀 halts on 𝑤, so on line 1, 𝑅 accepts; on line 2, 𝑀 accept, on
line 3, 𝑆 accepts overall.
If <𝑀, 𝑤> not in 𝐴்ெ, then either 𝑀 loops on 𝑤 (in which case, 𝑆 will reject on line 1) or 𝑀 rejects
𝑤 (in which case, 𝑆 will reject on line 3).

⇒⇐ □

 Lecture notes Page 3

