For clarity, consider a language L.

1. Is L decidable?
2. How would you design a TM to decide L?

Design it. Give the algorithm.

These questions are different!

If you can give a TM in QZ, then Q1 is YES. Sometimes we can prove Q1 is YES even though we don't have enough info to answer Q2.

Define

$$A_{TM} = \{ <M, w> : M \text{ is a TM which accepts string } w \}$$

A_{TM} is not decidable

A_{TM} is recognizable

recognizable \& A_{TM}

decidable
1 & M is a TM, define $L(M) = \{ w \mid M \text{ accepts } w \}$. This is the language recognized by M.

<table>
<thead>
<tr>
<th>list of all TMs</th>
<th>all Turing-recognizable languages</th>
<th>all co-recognizable languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<M_1>$</td>
<td>$L(M_1)$</td>
<td>$L(M_1)$</td>
</tr>
<tr>
<td>$<M_2>$</td>
<td>$L(M_2)$</td>
<td></td>
</tr>
<tr>
<td>$<M_3>$</td>
<td>$L(M_3)$</td>
<td>$L(M_3)$</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Countable ✓ (might contain duplicates)

Claim: $\overline{\text{ATM}}$ is not decidable.

Proof: (by contradiction)

Suppose M decides $\overline{\text{ATM}}$.
\(N = \"\text{On input } (R, w)\:\)
1. Run \(M \) on \((R, w) \).
2. Do the opposite.\"

\(N \) is a decider for \(A_{TM} \).

\(\Rightarrow \) \(\Leftarrow \) We know \(A_{TM} \) is undecidable!