W13 L1 NP-completeness and Cook-Levin Theorem
Monday, April 27, 2020 9:06

b
& TSR (WY AJ&N\J(f7// |
i T f 777 //“5%&«.
% R v | NY
—] usy B -
We wowk b Mm&aaym w ¥ ¢ AR
Al S

How do ‘86“' prav A YU WMW6\S (- Mu"?
fVed b ﬂw Jart A €D %F")} AcP.

/\h‘, SLIWSY cAMMIMgmb BUT

T b C4eD and DB dem Cept

A(chuddb\ need Yo slaw - A €8 fr some N?~uwa~A
(0} tome wad DL IP ao well)

Lecture notes Page 1

(DS(toved wed He W w w'-l“

We wud it NP conln pudhom do g sbked

Definitions:

- avariable is something like x, y, z (these are logical variables, so they can take on the values true/false)

- aliteral is a variable or its negation, for example x, x

- adisjunction is an "or" and we write it V, for example "x or y" is written x V y

- aconjunction is an "and" and we write it A, for example "x and y" is written x Ay

- aclause is a disjunction of several literals, for example (x Vy VvV z),and (x VX Vy vV w) and (¥)

- aformulais in conjunctive normal form if it is the conjunction of some clauses
forexample (xVY)A(zVX)A(WVyVZ)A(y)

- asatisfying assignment is a way to give each variable a Boolean value to make the overall expression
evaluate to TRUE

Define SAT = {{¢) | ¢ is a conjunctive normal form formula and also ¢ has a satisfying assignment}.
For example (x) A (%) is not in SAT, but (x V y) A (Z) is in SAT.

Theorem: (Cook and Levin) SAT is NP-complete.

Proof:

Need to show that SAT € NP and also that forany A € NP,A <, SAT.

SAT € NP: The certificate is the truth assignment, and we just check that the input is a properly-formatted
formulae ¢ in conjunctive normal form and that the given truth assignment evaluates to TRUE.

Take any language A € NP. We need to come up with a polynomial-time reduction A <, SAT.

From the assumption that A € NP, we know there is some nondeterministic polynomial-time TM N which
decides A. Let's say that N runs in time n* for some k € N. We know that on input string w, some branch of
N's computation will accept string w.

On that branch, we will go through configurations of N: \ﬁﬁ
first one is the starting configuration: gow o)\ N7 g
next one will be some configuration we get to by following a transition of N based on the last configuration \‘\

next one will be some configuration we get to by following a transition of N based on the last configuration
next one will be some configuration we get to by following a transition of N based on the last configuration
next one will be some configuration we get to by following a transition of N based on the last configuration

next one is an accepting configuration where N is in state qg¢cept-

/

WR\WW\ oo loneth ak wok "

Let's think about this accepting computation as a table of n* x n* many squares:

Lecture notes Page 2

——

% A

S e SR

Now we know that w € A if and only if there is some table like the above, which has the following

properties: /
-itis nk x n¥

- the first row is #qow (then blanks) #

- the i*" row is one step of computation after the i — 1¢" row (or is exactly identical, if the TM

has stopped computing)
- there is a row where we reached qgccept

Our goal is now to write a formula ¢ which is satisfiable if and only if this table can exist.

(Want thatw € A if and only if ¢ € SAT.)

We'll have a variable x; ; ; for every possible value (i,j) € [n*] X [n¥] ands e TU Q.
We want is that if tape square i, j has character a in it, then x; ; , =TRUE and x; ; , =FALSE for all

other charactersb € T.

[

In order to enforce that every tape square has at least one character in it, we'll have a clause for each i, j
pair which is: (VSEF xi,j_s) = (xi_]-_a Vv xi,j,b V-V xi,j_#)
This clause is satisfied when at least one of these variables is true (this place in the table has at least
one character assigned to it).

In order to enforce that every tape square has at most one character in it, we'll have a clause for

each i, j and each pair of different letters a,b € T' U Q: (Xj .o V X j5)-

This clause is satisfied when at least one of a or b is NOT the letter assigned to tape square i, j.

Altogether, these two pieces enforce that every square of our table will have exactly one letter

assigned to it.

In order to enforce that the first row is #qow (then blanks)#:
we add the clauses (x1,1,4) A (%1,2,g,) A (X1,3w0) A+ A (X1 e)

In order to enforce that we eventually reach qgccep; in the table, we need that somewhere, we have

Qaccept in a configuration.
We can add the clause (vl-_]-

This clause is satisfied when at least one square of the table, somewhere, is q,ccept-

xi:f:‘laccept)'

Lecture notes Page 3

@ loodk)

e

Rk 0w 15 £ gw HUL-#

In order to enforce that each row of the table is one (or zero) step of computation after the last row, we
need to look at "windows":

- always ok if a=d, b=e, c=f (no change)
- if they're different, what could have happened?
One of a/b/c must have been a state, and in the bottom row, the state moved by at most one

place, and maybe changed the tape.
)LJ» < (?) a))

For example

Sifimasing,

overall idea: for every 2x3 window, come up with every possibly valid window (based on the transitions
of the TM) and encode those as clauses.

We'll add the clauses that enforce "these clauses are satisfiable if and only if every window is a valid
window, based on the TM transitions".

(refer to the textbook for details of how exactly to write all these clauses)

et \\“u\ RW H N\ b\\

Lecture notes Page 4

