
no quiz this week-
homework 10 available this afternoon-

Announcements:

W13 L1 NP-completeness and Cook-Levin Theorem
Monday, April 27, 2020 9:06

 Lecture notes Page 1

a variable is something like 𝑥, 𝑦, 𝑧 (these are logical variables, so they can take on the values true/false)-
a literal is a variable or its negation, for example 𝑥, 𝑥⎯⎯-
a disjunction is an "or" and we write it ∨, for example "x or y" is written 𝑥 ∨ 𝑦-
a conjunction is an "and" and we write it ∧, for example "x and y" is written 𝑥 ∧ 𝑦-
a clause is a disjunction of several literals, for example (𝑥 ∨ 𝑦 ∨ 𝑧), and (𝑥 ∨ 𝑥⎯⎯∨ 𝑦 ∨ 𝑤) and (𝑦)-
a formula is in conjunctive normal form if it is the conjunction of some clauses
for example (𝑥 ∨ 𝑦) ∧ (𝑧 ∨ 𝑥⎯⎯) ∧ (𝑤 ∨ 𝑦 ∨ 𝑧⎯) ∧ (𝑦)

-

a satisfying assignment is a way to give each variable a Boolean value to make the overall expression
evaluate to TRUE

-

Definitions:

Define 𝑆𝐴𝑇 = { ⟨𝜑⟩ | 𝜑 is a conjunctive normal form formula and also 𝜑 has a satisfying assignment}.

For example (𝑥) ∧ (𝑥⎯⎯) is not in SAT, but (𝑥 ∨ 𝑦) ∧ (𝑧⎯) is in SAT.

Theorem: (Cook and Levin) 𝑆𝐴𝑇 is NP-complete.
Proof:
Need to show that 𝑆𝐴𝑇 ∈ 𝑁𝑃 and also that for any 𝐴 ∈ 𝑁𝑃, 𝐴 ≤ 𝑆𝐴𝑇.

𝑆𝐴𝑇 ∈ 𝑁𝑃: The certificate is the truth assignment, and we just check that the input is a properly-formatted
formulae 𝜑 in conjunctive normal form and that the given truth assignment evaluates to TRUE.

Take any language 𝐴 ∈ 𝑁𝑃. We need to come up with a polynomial-time reduction 𝐴 ≤ 𝑆𝐴𝑇.

From the assumption that 𝐴 ∈ 𝑁𝑃, we know there is some nondeterministic polynomial-time TM 𝑁 which
decides 𝐴. Let's say that 𝑁 runs in time 𝑛 for some 𝑘 ∈ ℕ. We know that on input string 𝑤, some branch of
𝑁's computation will accept string 𝑤.

On that branch, we will go through configurations of 𝑁:
first one is the starting configuration: 𝑞𝑤
next one will be some configuration we get to by following a transition of 𝑁 based on the last configuration
next one will be some configuration we get to by following a transition of 𝑁 based on the last configuration
next one will be some configuration we get to by following a transition of 𝑁 based on the last configuration
next one will be some configuration we get to by following a transition of 𝑁 based on the last configuration
…
next one is an accepting configuration where 𝑁 is in state 𝑞௧.

Let's think about this accepting computation as a table of 𝑛 × 𝑛 many squares:

 Lecture notes Page 2

- it is 𝑛 × 𝑛

- the first row is #𝑞𝑤 (then blanks) #
- the 𝑖௧ row is one step of computation after the 𝑖 − 1௧ row (or is exactly identical, if the TM
has stopped computing)
- there is a row where we reached 𝑞௧

Now we know that 𝑤 ∈ 𝐴 if and only if there is some table like the above, which has the following
properties:

Our goal is now to write a formula 𝜑 which is satisfiable if and only if this table can exist.
(Want that 𝑤 ∈ 𝐴 if and only if 𝜑 ∈ 𝑆𝐴𝑇.)

We'll have a variable 𝑥,,௦ for every possible value (𝑖, 𝑗) ∈ ൣ𝑛൧ × ൣ𝑛൧ and 𝑠 ∈ Γ ∪ Q.

We want is that if tape square 𝑖, 𝑗 has character 𝑎 in it, then 𝑥,, =TRUE and 𝑥,,=FALSE for all

other characters 𝑏 ∈ Γ.

In order to enforce that every tape square has at least one character in it, we'll have a clause for each 𝑖, 𝑗
pair which is: (∨௦∈ 𝑥,,௦) = (𝑥,, ∨ 𝑥,, ∨ ⋯ ∨ 𝑥,,#)

This clause is satisfied when at least one of these variables is true (this place in the table has at least
one character assigned to it).

In order to enforce that every tape square has at most one character in it, we'll have a clause for
each 𝑖, 𝑗 and each pair of different letters 𝑎, 𝑏 ∈ Γ ∪ 𝑄: (𝑥,,

⎯⎯⎯⎯ ∨ 𝑥,,
⎯⎯⎯⎯).

This clause is satisfied when at least one of 𝑎 or 𝑏 is NOT the letter assigned to tape square 𝑖, 𝑗.

Altogether, these two pieces enforce that every square of our table will have exactly one letter
assigned to it.

In order to enforce that the first row is #𝑞𝑤 (then blanks)#:
we add the clauses ൫𝑥ଵ,ଵ,#൯ ∧ ൫𝑥ଵ,ଶ,బ

൯ ∧ ൫𝑥ଵ,ଷ,௪బ
൯ ∧ ⋯ ∧ (𝑥ଵ,ೖ,#).

In order to enforce that we eventually reach 𝑞௧ in the table, we need that somewhere, we have
𝑞௧ in a configuration.
We can add the clause (∨, 𝑥,,ೌ

).

This clause is satisfied when at least one square of the table, somewhere, is 𝑞௧.

In order to enforce that each row of the table is one (or zero) step of computation after the last row, we

 Lecture notes Page 3

In order to enforce that each row of the table is one (or zero) step of computation after the last row, we
need to look at "windows":

always ok if a=d, b=e, c=f (no change)-
if they're different, what could have happened?
One of a/b/c must have been a state, and in the bottom row, the state moved by at most one
place, and maybe changed the tape.

-

For example

overall idea: for every 2x3 window, come up with every possibly valid window (based on the transitions
of the TM) and encode those as clauses.

We'll add the clauses that enforce "these clauses are satisfiable if and only if every window is a valid
window, based on the TM transitions".

(refer to the textbook for details of how exactly to write all these clauses)

 Lecture notes Page 4

 Lecture notes Page 5

