W13 L1 NP-completeness and Cook-Levin Theorem Monday, April 27, 2020 9:06 Announcements: NP-hand no quiz this week homework 10 available this afternoon more difficult · HALTIM easy We would to combine diagrams with P & NP. AEP3 How do you prove a new problem is NP- complete? Need to show that A Sp B for every AENP. This seems challenging BUT Thm: If C=pD and D=pE then C=pE. (Sp are transitive) Alternately, need to show: A Ep B for some NP-complete A (DP. conversed RENP as well

(Of course need BENP as well)

We need one NP-complete problem to get standed.

Definitions:

- a **variable** is something like *x*, *y*, *z* (these are logical variables, so they can take on the values true/false)
- a **literal** is a variable or its negation, for example x, \overline{x}
- a **disjunction** is an "or" and we write it V, for example "x or y" is written x V y
- a **conjunction** is an "and" and we write it \wedge , for example "x and y" is written $x \wedge y$
- a **clause** is a disjunction of several literals, for example $(x \lor y \lor z)$, and $(x \lor \overline{x} \lor y \lor w)$ and (y)
- a formula is in **conjunctive normal form** if it is the conjunction of some clauses for example $(x \lor y) \land (z \lor \overline{x}) \land (w \lor y \lor \overline{z}) \land (y)$
- a **satisfying assignment** is a way to give each variable a Boolean value to make the overall expression evaluate to TRUE

Define $SAT = \{ \langle \varphi \rangle \mid \varphi \text{ is a conjunctive normal form formula and also } \varphi \text{ has a satisfying assignment} \}.$

For example $(x) \land (\overline{x})$ is not in SAT, but $(x \lor y) \land (\overline{z})$ is in SAT.

<u>Theorem:</u> (Cook and Levin) *SAT* is NP-complete.

Need to show that $SAT \in NP$ and also that for any $A \in NP$, $A \leq_p SAT$.

SAT \in NP: The certificate is the truth assignment, and we just check that the input is a properly-formatted formulae φ in conjunctive normal form and that the given truth assignment evaluates to TRUE.

Take any language $A \in NP$. We need to come up with a polynomial-time reduction $A \leq_{v} SAT$.

From the assumption that $A \in NP$, we know there is some nondeterministic polynomial-time TM N which decides A. Let's say that N runs in time n^k for some $k \in \mathbb{N}$. We know that on input string w, some branch of N's computation will accept string w.

On that branch, we will go through configurations of N:

first one is the starting configuration: $q_0 w$

....

next one will be some configuration we get to by following a transition of N based on the last configuration next one will be some configuration we get to by following a transition of N based on the last configuration next one will be some configuration we get to by following a transition of N based on the last configuration next one will be some configuration we get to by following a transition of N based on the last configuration next one will be some configuration we get to by following a transition of N based on the last configuration

next one is an accepting configuration where N is in state q_{accept} .

longest configuration has length at most it

at most

Let's think about this accepting computation as a table of $n^k \times n^k$ many squares:

Now we know that $w \in A$ if and only if there is some table like the above, which has the following properties:

- it is $n^k \times n^k$
- the first row is $\#q_0w$ (blanks) # the i^{th} row is one step of computation after the $i 1^{th}$ row there is a row where we reached q_{accept}

Our goal is now to write a formula φ which is satisfiable if and only if this table can exist. (Want that $w \in A$ if and only if $\varphi \in SAT$.)