W13 L1 NP-completeness and Cook-Levin Theorem

Monday, April 27, 2020 9:06

Announcemen ts:

- no quiz this week ! &
- homework 10 available this afternoon N(\?’

N 7\ | VS‘\K'

N in
% Q v| NY

n=NIIEEEEEN LG""X L

We wowk fo cavbing dioyramo wiv ¥ ¢ N
LoD

Alo i
H“"’ A,‘gs\k prak A’YW(N\DW 1% NP'WW? <
fVeed bo sl Hant Aco® y{?’ oy AcNp.
| /l\M) SLIWY WMJM»@ Ul
T Lk C42D omd DEGE Hm CpE

——

by i s s A £,8 T sone. - A

{/.)? Pl s wael Kt N? on M“\

—

_

Lecture notes Page 1



(0f tovwd wud BL NP W’-”\

W vab gt NP conglhe oudiom do g skl

Definitions:

- avariable is something like x, y, z (these are logical variables, so they can take on the values true/false)

- aliteral is a variable or its negation, for example x, x

- adisjunction is an "or" and we write it V, for example "x or y" is written x V y

- aconjunction is an "and" and we write it A, for example "x and y" is written x A y

- aclause is a disjunction of several literals, for example (x Vy V z),and (x VX Vy V w) and (¥)

- aformulais in conjunctive normal form if it is the conjunction of some clauses
for example (xVy)A(ZVX)AWVyYVZ)A(y)

- a satisfying assignment is a way to give each variable a Boolean value to make the overall expression
evaluate to TRUE

Define SAT = {{¢@) | ¢ is a conjunctive normal form formula and also ¢ has a satisfying assignment}.
For example (x) A (x) is notin SAT, but (x V y) A (z) isin SAT.

Theorem: (Cook and Levin) SAT is NP-complete.
Proof:
Need to show that SAT € NP and also that forany A € NP, A <p SAT.

SAT € NP: The certificate is the truth assignment, and we just check that the input is a properly-formatted
formulae ¢ in conjunctive normal form and that the given truth assignment evaluates to TRUE.

Take any language A € NP. We need to come up with a polynomial-time reduction 4 <,, SAT.

From the assumption that A € NP, we know there is some nondeterministic polynomial-time TM N which
decides A. Let's say that N runs in time n* for some k € N. We know that on input string w, some branch of
N's computation will accept string w.

first one is the starting configuration: gow

next one will be some configuration we get to by following a transition of N based on the last configuration
next one will be some configuration we get to by following a transition of N based on the last configuration
next one will be some configuration we get to by following a transition of N based on the last configuration
next one will be some configuration we get to by following a transition of N based on the last configuration

On that branch, we will go through configurations of N: o) \ﬂﬁ
g

next one is an accepting configuration where N is in state ggccept-

/

W‘(ﬁ“’(f‘"“’\\&\ Woo logth ah wsck "

Let's think about this accepting computation as a table of n* x n¥ many squares:

Lecture notes Page 2



ey
s
£

<

5

L

C
=\

e

| % THT

.2

S

Now we know that w € A if and only if there is some table like the above, which has the following
properties:

-itis nk x n¥

- the first row is #qyw (blanks) #

- the i*" row is one step of computation after the i — 1" row

- there is a row where we reached qgccept

Our goal is now to write a formula ¢ which is satisfiable if and only if this table can exist.
(Want that w € A ifand only if ¢ € SAT.)

Lecture notes Page 3



