
Theorem: 𝑇𝑆𝑃 ∈ 𝑁𝑃.

Proof: (version 1)
Let's give a verifier 𝑉 for 𝑇𝑆𝑃.

Check that 𝐶 is a list of cities, 𝑑 is a distance function for distances between those cities, 𝑏 ∈ ℕ, and 𝑇 is a list
of the same cities as 𝐶, with no repeated cities, and |𝑇| = |𝐶|.

1.

distance =0, current=𝑇[0]2.

distance = distance + d(current, i)a.
current = ib.

for each city 𝑖 ∈ 𝑇:3.

distance = distance + d(𝑇[last item] , 𝑇[first item])4.
If distance ≤ 𝑏, accept. Else, reject."5.

𝑉 = "On input ⟨𝐶, 𝑑, 𝑏, 𝑇⟩:

does 𝑉 run in polynomial time in the length of the input?-
is |𝑇| polynomial in the length of the input ⟨𝐶, 𝑑, 𝑏⟩?-
the string ⟨𝐶, 𝑑, 𝑏⟩ ∈ 𝑇𝑆𝑃 if and only if there is some 𝑇 such that ⟨𝐶, 𝑑, 𝑏, 𝑇⟩ ∈ 𝐿(𝑉)-

Need to check:

Proof: (version 2)
Let's give a nondeterministic TM to decide TSP:

Check the formatting (if it's bad, reject).1.
Nondeterministically pick an order of cities to visit in 𝐶, and track the total distance travelled.2.
Once we run out of new cities to visit, go back to the first city we started at (add this to the total distance
travelled).

3.

If the total distance travelled was ≤ 𝑏, accept. Else, reject."4.

𝑀 = "On input ⟨𝐶, 𝑑, 𝑏⟩:

does 𝑀 run in polynomial time in the input length?-
is 𝑀 a decider?-
the string ⟨𝐶, 𝑑, 𝑏⟩ ∈ 𝑇𝑆𝑃 if and only if 𝑀 accepts ⟨𝐶, 𝑑, 𝑏⟩-

Need to check:

Def: A function 𝑓: Σ∗ → Σ∗ is polynomial-time computable if there is some polynomial-time Turing
machine that computes it (on input 𝑤, this machine halts in time polynomial in |𝑤| with only 𝑓(𝑤)
on the tape).

Def: For two languages 𝐴 and 𝐵, we say that 𝐴 is polynomial-time reducible to 𝐵 if there exists a
polynomial-time computable function 𝑓 such that 𝑤 ∈ 𝐴 if and only if 𝑓(𝑤) ∈ 𝐵.
We write this as 𝐴 ≤௣ 𝐵.

W12 L2 ௣
Wednesday, April 22, 2020 9:18

 Lecture notes Page 1

Def: For two languages 𝐴 and 𝐵, we say that 𝐴 is polynomial-time reducible to 𝐵 if there exists a
polynomial-time computable function 𝑓 such that 𝑤 ∈ 𝐴 if and only if 𝑓(𝑤) ∈ 𝐵.
We write this as 𝐴 ≤௣ 𝐵.

Note that this is more restrictive than the mapping reduction 𝐴 ≤௠ 𝐵.

Reminder:
𝑃 is the set of languages decidable in polynomial time by a deterministic TM
𝑁𝑃 is the set of languages decidable in polynomial time by a nondeterministic TM

Def: A language 𝐵 is 𝑁𝑃 −hard if, for every 𝐴 ∈ 𝑁𝑃, we have that 𝐴 ≤௣ 𝐵.

Def: A language 𝐵 is 𝑁𝑃 −complete if 𝐵 is 𝑁𝑃 −hard and 𝐵 ∈ 𝑁𝑃.

 Lecture notes Page 2

