W12 L2 P, NP, \leq_p

Wednesday, April 22, 2020 9:18

$\operatorname{TRAVELINGSALESMANPROBLEM}$, abbreviated TSP

$$\mathrm{TSP} = \left\{ \langle C, d, b \rangle \right.$$

C is a list of cities $d: C \times C \to \mathbb{N}$ gives the distance between cities There is a round-trip path which visits each non-home city exactly once, and has total distance $\leq b$.

<u>Theorem:</u> $TSP \in NP$.

Let's give a verifier V for TSP. V = "On input (C, d, b, T):

- 1. Check that *C* is a list of cities, *d* is a distance function for distances between those cities, $b \in \mathbb{N}$, and *T* is a list of the same cities as *C*, with no repeated cities, and |T| = |C|.
- 2. distance =0, current=T[0]
- 3. for each city $i \in T$:
 - a. distance = distance + d(current, i)
 - b. current = i
- distance = distance + d(T[last item], T[first item])
- 5. If distance $\leq b$, accept. Else, reject."

Need to check:

- does *V* run in polynomial time in the length of the input?
- is |T| polynomial in the length of the input $\langle C, d, b \rangle$?
- the string $(C, d, b) \in TSP$ if and only if there is some T such that $(C, d, b, T) \in L(V)$

Proof: (version 2)

Let's give a nondeterministic TM to decide TSP:

- $M = "On input \langle C, d, b \rangle:$
 - 1. Check the formatting (if it's bad, reject).
 - 2. Nondeterministically pick an order of cities to visit in *C*, and track the total distance travelled.
 - 3. Once we run out of new cities to visit, go back to the first city we started at (add this to the total distance travelled).
 - 4. If the total distance travelled was $\leq b$, accept. Else, reject."

Need to check:

- does *M* run in polynomial time in the input length?
- is *M* a decider?
- the string $\langle C, d, b \rangle \in TSP$ if and only if M accepts $\langle C, d, b \rangle$

<u>Def:</u> A function $f: \Sigma^* \to \Sigma^*$ is **polynomial-time computable** if there is some polynomial-time Turing machine that computes it (on input *w*, this machine halts in time polynomial in |w| with only f(w) on the tape).

<u>Def:</u> For two languages A and B, we say that A is polynomial-time reducible to B if there exists a polynomial-time computable function f such that $w \in A$ if and only if $f(w) \in B$.

<u>Def:</u> For two languages *A* and *B*, we say that *A* is polynomial-time reducible to *B* if there exists a polynomial-time computable function *f* such that $w \in A$ if and only if $f(w) \in B$. We write this as $A \leq_p B$.

B

Note that this is more restrictive than the mapping reduction $A \leq_m B$.

Reminder:

P is the set of languages decidable in polynomial time by a deterministic TM *NP* is the set of languages decidable in polynomial time by a nondeterministic TM

<u>Def:</u> A language *B* is *NP* —hard if, for every $A \in NP$, we have that $A \leq_p B$. <u>Def:</u> A language *B* is *NP* —complete if *B* is *NP* —hard and $B \in NP$.

Clichen QZ: A Ep B & BE CONP BENP Polytime vordet TM A GNR A GONR R nondeterministic