
Def: Language 𝐿 ∈ 𝑃 if 𝐿 can be decided by a one-tape deterministic Turing machine in time upper-bounded by a
polynomial in the length of the input.

example languages in 𝑃:

divisibility: 𝐿 = { ⟨𝑥, 𝑦⟩|𝑦 = 𝑘 ⋅ 𝑥 for some 𝑘 ∈ ℤ}

Check formatting and read 𝑥 and 𝑦1.
𝑧 = 𝑥2.
while 𝑧 < 𝑦:
set 𝑧 to 𝑧 + 𝑥

3.

If 𝑧 = 𝑦: halt and accept // 𝑦 = 𝑘 ⋅ 𝑥4.
Reject // 𝑦 is not a multiple of 𝑥5.

here's a high-level way the Turing machine could work:

other example languages in 𝑃 from the textbook:

greatest common divisor {⟨𝑥, 𝑦, 𝑧⟩ | 𝑥, 𝑦, 𝑧 ∈ ℕ and 𝑧 is the greatest common divisor of 𝑥 and 𝑦}

PATH = {⟨𝐺, 𝑠, 𝑡⟩ | 𝐺 is a graph and 𝑠 and 𝑡 are nodes, and there is a path from 𝑠 to 𝑡 along edges of graph 𝐺}

every context-free language

most problems you've encountered in CS (BFS, DFS, sorting, etc.)

NOTE:
Inputs must be reasonably encoded, for example binary/decimal/base 𝑘 for 𝑘 ≥ 2.
Unary encoding is NOT ok.

Def: Language 𝐿 ∈ 𝑁𝑃 if 𝐿 can be decided by a one-tape nondeterministic Turing machine in time upper-bounded
by a polynomial in the length of the input.

if there is some branch that accepts, then overall we accept-
if every branch rejects, we reject overall-
the runtime of a nondeterministic TM is the worst-case runtime of the longest-running branch-

With this definition:

An alternate definition of 𝑁𝑃:
A verifier for a language 𝐿 is a one-tape deterministic Turing machine where inputs are of the form ⟨𝑤, 𝑣⟩, and we
say that
𝐿 = {𝑤 | there exists some string 𝑣 where the verifier accepts the pair ⟨𝑤, 𝑣⟩}

have some certificate 𝑣 which is of length polynomial in |𝑤|-
run in time polynomial in |𝑤|-

A polynomial-time verifier must:

Theorem: 𝐿 ∈ 𝑁𝑃 if and only if 𝐿 has a polynomial-time verifier.

In order to prove this, we need to show that "has a verifier" is equivalent to "has a nondeterministic decider" (both
are polynomially-bounded in runtime).

one direction:

W12L1 and
Monday, April 20, 2020 9:14

 Lecture notes Page 1

one direction:
S'pose that 𝐿 has a one-tape nondeterministic polytime TM 𝑁.
Then the verifier will be:
𝑉 = "on input ⟨𝑤, 𝑣⟩:
 1. Run 𝑁, but use the characters in 𝑣 to make the nondeterministic choices at each step.
 2. If 𝑁 accepted, accept. Else, reject."

𝑉 is deterministic-
𝑉 is polynomial-time in the length of the input-
𝑤 ∈ 𝐿 if and only if there is some 𝑣 such that 𝑉 accepts ⟨𝑤, 𝑣⟩-

Need to check:

other direction:
S'pose that 𝐿 has a polytime verifier 𝑉.
Then we build a nondeterministic TM 𝑁:
𝑁 = "on input 𝑤:
 1. Nondeterministically guess a string 𝑣.
 2. Run 𝑉 on input ⟨𝑤, 𝑣⟩.
 3. If 𝑉 accepted, accept. Else, reject."

𝑁 is nondetermistic-
𝑁 is polynomial-time in the length of 𝑤-
𝑤 ∈ 𝐿 if and only if 𝑁 accepts 𝑤-

Need to check:

 Lecture notes Page 2

