W12L1 P and NP

Monday, April 20, 2020 9:14

Def: Language L € P if L can be decided by a one-tape deterministic Turing machine in time upper-bounded by a
polynomial in the length of the input.

example languages in P:

divisibility: L = { (x, y)|y = k - x for some k € Z} MML

here's a high-level way the Turing machine could work: on in i L 3
1. Check formatting and read x and y

2. 2=x S wpy % b gt Z-
3. whilez<y: — O(r\ | wa ‘\M-‘S
setztoz+x ~ O(n \»Y ¢ 5*‘1 y'x
4. Ifz = y:haltand accept //y = k - X
5. Reject//y is not a multiple ofx_ (13

other example languages in P from the textbook

greatest common divisor {{x,y,z) | x,y,z € N and z is the greatest common divisor of x and y}

PATH = {(G, s,t) | G is a graph and s and t are nodes, and there is a path from s to t along edges of graph G}
every context-free language

most problems you've encountered in CS (BFS, DFS, sorting, etc.)

NOTE:

Inputs must be reasonably encoded, for example binary/decimal/base k for k > 2.
Unary encoding is NOT ok.

Def: Language L € NP if L can be decided by a one-tape nondeterministic Turing machine in time upper-bounded
by a polynomial in the length of the input.

With this definition:
- ifthere is some branch that accepts, then overall we accept
- if every branch rejects, we reject overall
- the runtime of a nondeterministic TM is the worst-case runtime of the longest-running branch

An alternate definition of NP:

A verifier for a language L is a one-tape deterministic Turing machine where inputs are of the form (w, v), and we
say that

L = {w | there exists some string v where the verifier accepts the pair (w, v)}

A polynomial-time verifier must:
- have some certificate v which is of length polynomial in |w]|
- run in time polynomial in |w|

Theorem: L € NP if and only if L has a polynomial-time verifier.

In order to prove this, we need to show that "has a verifier" is equivalent to "has a nondeterministic decider" (both
are polynomially-bounded in runtime).

Lecture notes Page 1

one direction:

S'pose that L has a one-tape nondeterministic polytime TM N.

Then the verifier will be:

V ="on input(w, v):
1. Run N, but use the characters in v to make the nondeterministic choices at each step.
2. If N accepted, accept. Else, reject.”

Need to check:
- Vis deterministic
- Vis polynomial-time in the length of the input
- w € L ifand only if there is some v such that V accepts (w, v)

other direction:

S'pose that L has a polytime verifier I/.

Then we build a nondeterministic TM N:

N ="on inputw:
1. Nondeterministically guess a string v.
2.Run V on input {(w, v).
3.1f V accepted, accept. Else, reject.”

Need to check:
- N is nondetermistic
- N is polynomial-time in the length of w
- w € Lifand onlyif N accepts w

Sy aon an ik o Ly
i :
nnpr‘ <Xu3 k7
»3 k-x »
:%uwkacj-

//

Lecture notes Page 2

