W11L1: P and big O notation

Monday, April 13, 2020 9:21

Announcements:

- quiz this week on gradescope
- no homework this week
- midterm 2 next week "in lab" (on gradescope)

We now want to discuss runtime: how long does it take a Turing machine to reach an answer?

Definition:

Let $f, g: \mathbb{N} \to \mathbb{R}^+$ be two functions.

We say that f(n) is O(g(n)) if there exists a constant c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$. If f is O(g) then we say that "f is asymptotically upper-bounded by g" and "g is an asymptotic upper bound for f."

Problem 1: Prove that $f(n) = 2n^2 + 7n + 16$ is O(g(n)) where $g(n) = n^2$.

Pick
$$c = 25$$
 and $n_0 = 1$.
Want to show that $2n^2 + 7n + 16 \le 25 \cdot (n^2)$ for $n \ge n_0 = 1$.
 $c \cdot g(n) = 2n^2 + 3n^2 + 16n^2 \ge 2n^2 + 7n + 16n^2$ b/c $n > 1$
 $\ge 2n^2 + 7n + 16$ b/c $n > 1$
 $\ge 2n^2 + 7n + 16$ b/c $n > 1$
 $\ge 2n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 1$
 $\ge 7n^2 + 7n + 16$ b/c $n > 16$ b

Problem 2: Order these 3 functions by increasing $O(\cdot)$ asymptotic growth:

$$f(n) = 100n$$

$$g(n) = \frac{n^{10}}{6}$$

$$h(n) = 4n^{2}$$
Claim: $f(n) = 0$ is $O(h)$ and his $O(g)$

Henristic: look at the highest-order term

<u>Theorem</u>: If f, g, and h are all functions and $f \in O(g)$ and $g \in O(h)$ then $f \in O(h)$. idea: $O(\cdot)$ is transitive

We are going to use $O(\cdot)$ to compare the efficiency of different Turing machines to solve the same problem.

The "speed" of a Turing machine is the number of steps used in computation (up until it halts). This runtime is a function of input size: $f(n): \mathbb{N} \to \mathbb{N}$ will be the number of steps a Turing machine takes (until it halts) when given an input of *length* = n.

If we have a Turing machine M which decides $L \subseteq \Sigma^*$ then we can define a function $T_M(w)$ = the number of steps M takes on input w

We are interested in the runtime of M, which is the **worst-case** runtime, defined as: $T_M(n) =$ maximum number of steps M takes on any input w where |w| = n.