Question 1:

\[B \leq_M \overline{B} \]

We know if \(B \) is decidable so is \(\overline{B} \). \(-\text{generally true}\)

Question 2:

Theorem (previously):

A language \(L \) is decidable if and only if \(L \) is recognizable and co-recognizable.
Conclusions we’ve drawn from \(A \leq_m B \):
- If \(B \) is decidable, then \(A \) is decidable.
- If \(B \) is recognizable, then \(A \) is recognizable.
- \(\overline{A} \leq_m \overline{B} \)
- If \(B \) is co-recognizable, then \(A \) is co-recognizable.

Rice's Thm

\[
L_{TM} = \{ <M> | M \text{ is a Turing machine} \}
\]

Def: A property \(P \) \(\leq \) \(L_{TM} \) must satisfy that whenever \(L(M_1) = L(M_2) \)
then either
\(\text{(i)}\) \(<M_1>\) and \(<M_2>\) \(\in\ D\)
\(\text{(ii)}\) \(<M_1>\) and \(<M_2>\) \(\notin\ D\).

Rice's Thm.: If \(D\) is a property and
\(\neg\emptyset\) and \(D \neq L_{TM}\), then \(D\) is undecidable.

This thm is ONLY useful to show that languages of the form \(\exists <M> | M\text{ is a TM and ______}\) are undecidable.

\(E_{TM} = \{<M> | M\text{ is a TM and } L(M) = \emptyset\}\)

In order to apply Rice's Theorem, we need to check:
- \(E_{TM}\) is not \(\emptyset\): it contains at least one machine, for example "on input x: always reject"
- \(E_{TM}\) is not \(L_{TM}\): it does not contain at least one machine, for example "on input x: always accept"
- \(E_{TM}\) is a property: If \(L(M_1) = L(M_2)\) then either they both equal \(\emptyset\) (so \(<M_1>, <M_2> \in E_{TM}\), or they both are something else, and \(<M_1>, <M_2> \notin E_{TM}\).

Thus we can conclude by Rice's theorem that \(E_{TM}\) is not decidable. \(\square\)