Announcements:
- quiz this week! you'll get an email and it will be announced on Piazza -- make sure you complete it by Friday
- pass-the-baton is back (modified)

Def: A function $f : \Sigma^* \to \Sigma^*$ is **computable** iff there is some Turing machine M which on every input w eventually halts with just $f(w)$ on the tape.

Def: For two languages A and B, we will say that A is **mapping-reducible** to B if there is a computable function f such that $\forall w, w \in A \iff f(w) \in B$.

We write: $A \leq_m B$
We say: "f is the reduction from A to B"
We think: If we can solve B, then we can solve A:

We showed:

$$f(<M,w>) = <N_1>$$
We showed:

\[\text{HALT}_M \leq_m \text{Con_{Free}_M} \]

\[\langle M, w \rangle \xrightarrow{f} \langle N_2 \rangle \]

The \(S \) we built

\[f(\langle M, w \rangle) = \langle N_2 \rangle \]