ADVANCED TOPICS IN
COMPUTABILITY
THEORY

In this chapter we delve into four deeper aspects of computability theory: (1) the
recursion theorem, (2) logical theories, (3) Turing reducibility, and (4) descrip-
tive complexity. The topic covered in each section is mainly independent of the
others, except for an application of the recursion theorem at the end of the sec-
tion on logical theories. Part Three of this book doesn’t depend on any material
from this chapter.

6.1

THE RECURSION THEOREM

The recursion theorem is a mathematical result that plays an important role in
advanced work in the theory of computability. It has connections to mathemati-
cal logic, the theory of self-reproducing systems, and even computer viruses.

To introduce the recursion theorem, we consider a paradox that arises in the
study of life. It concerns the possibility of making machines that can construct
replicas of themselves. The paradox can be summarized in the following manner.

245

246 CHAPTER 6 / ADVANCED TOPICS IN COMPUTABILITY THEORY

1. Living things are machines.
2. Living things can self-reproduce.
3. Machines cannot self-reproduce.

Statement 1 is a tenet of modern biology. We believe that organisms operate
in a mechanistic way. Statement 2 is obvious. The ability to self-reproducs
is an essential characteristic of every biological species. For statement 3, we
make the following argument that machines cannot self-reproduce. Consider
a machine that constructs other machines, such as an automated factory tha
produces cars. Raw materials go in at one end, the manufacturing robots follow
a set of instructions, and then completed vehicles come out the other end.

We claim that the factory must be more complex than the cars produced, =
the sense that designing the factory would be more difficult than designing a car
This claim must be true because the factory itself has the car’s design within .
in addition to the design of all the manufacturing robots. The same reasoning
applies to any machine A that constructs a machine B: A must be more complex
than B. But a machine cannot be more complex than itself. Consequently, ne
machine can construct itself, and thus self-reproduction is impossible.

How can we resolve this paradox? The answer is simple: Statement 3 is in-
correct. Making machines that reproduce themselves is possible. The recursios
theorem demonstrates how.

SELF-REFERENCE

Let’s begin by making a Turing machine that ignores its input and prints ot
a copy of its own description. We call this machine SELF. To help describe
SELF, we need the following lemma.

LEMMA 6.1

There is a computable function g: $*— X*, where if w is any string, g(w) =
the description of a Turing machine P, that prints out w and then halts.

PROOF Once we understand the statement of this lemma, the proof is easy
Obviously, we can take any string w and construct from it a Turing machine thas
has w built into a table so that the machine can simply output w when started
The following TM Q computes g(w).

Q@ = “On input string w:
1. Construct the following Turing machine P,.
P, = “On any input:
1. Erase input.
2. Write w on the tape.
I i
2.5 Output (£,)"

6.1 THE RECURSION THEOREM 247

The Turing machine SELF is in two parts: A and B. We think of A and B
as being two separate procedures that go together to make up SELF. We want
SELF to print out (SELF') = (AB).

Part A runs first and upon completion passes control to B. The job of A is
to print out a description of B, and conversely the job of B is to print out a
description of A. The result is the desired description of SELF. The jobs are
similar, but they are carried out differently. We show how to get part A first.

For A we use the machine P,p), described by ¢((B)), which is the result of
applying the function ¢ to (B). Thus, part A is a Turing machine that prints out

B). Our description of A depends on having a description of B. So we can’t
complete the description of A until we construct B.

Now for part B. We might be tempted to define B with ¢((A)), but that
doesn’t make sense! Doing so would define B in terms of A, which in turn is
defined in terms of B. That would be a circular definition of an object in terms
of itself, a logical transgression. Instead, we define B so that it prints A by using
a different strategy: B computes A from the output that A produces.

We defined (A) to be ¢((B)). Now comes the tricky part: If B can obtain

B), it can apply ¢ to that and obtain (A). But how does B obtain (B)? It was
left on the tape when A finished! So B only needs to look at the tape to obtain

B). Then after B computes ¢((B)) = (A), it combines A and B into a single
machine and writes its description (AB) = (SELF') on the tape. In summary,
we have:

A = Ppy, and

B = “On input (M), where M is a portion of a TM:
1. Compute q((M)).
2. Combine the result with (M) to make a complete TM.
3. Print the description of this TM and halt.”

This completes the construction of SELF, for which a schematic diagram is
presented in the following figure.

A-»B
(=Pp)
control for SELF | ‘ | ‘ I Syart

FIGURE 6.2

Schematic of SELF, a TM that prints its own description

248 CHAPTER 6 / ADVANCED TOPICS IN COMPUTABILITY THEORY

If we now run SELF, we observe the following behavior.

1. First A runs. It prints (B) on the tape.

2. B starts. It looks at the tape and finds its input, (B).

3. B calculates ¢((B)) = (A) and combines that with (B) into a
TM description, (SELF').

4. B prints this description and halts.

We can’ easily implement this construction in any programming language &
obtain a program that outputs a copy of itself. We can even do so in plain E=-
glish. Suppose that we want to give an English sentence that commands the
reader to print a copy of the same sentence. One way to do so is to say:

Print out this sentence.

This sentence has the desired meaning because it directs the reader to print =
copy of the sentence itself. However, it doesn’t have an obvious translation int
a programming language because the self-referential word “this” in the sentencs
usually has no counterpart. But no self-reference is needed to make such a sea-
tence. Consider the following alternative.

Print out two copies of the following, the second one in quotes:
“Print out two copies of the following, the second one in quotes:”

In this sentence, the self-reference is replaced with the same construction uses
to make the TM SELF. Part B of the construction is the clause:

Print out two copies of the following, the second one in quotes:

Part A is the same, with quotes around it. A provides a copy of B to B so B ca=
process that copy as the TM does.

The recursion theorem provides the ability to implement the self-referentia:
this into any programming language. With it, any program has the ability to refes
to its own description, which has certain applications, as you will see. Befors =
getting to that, we state the recursion theorem itself. The recursion theores
extends the technique we used in constructing SELF so that a program ca=
obtain its own description and then go on to compute with it, instead of meres
printing it out.

THEOREM 6.3 e

Recursion theorem Let T be a Turing machine that computes a functios
t: ¥* x N*—»%*. There is a Turing machine R that computes a functios
r: ©*— X*, where for every w,

The statement of this theorem seems a bit technical, but it actually represenss
something quite simple. To make a Turing machine that can obtain its ow=
description and then compute with it, we need only make a machine, called =

6.1 THE RECURSION THEOREM 249

in the statement, that receives the description of the machine as an extra input.
Then the recursion theorem produces a new machine R, which operates exactly
as T does but with R’s description filled in automatically.

PROOF The proofis similar to the construction of SELF. We construct a TM
R in three parts, A, B, and T, where T is given by the statement of the theorem;
a schematic diagram is presented in the following figure.

A-B-HT
(:P(BT))

control for R r| ‘ l Ll I

FIGURE 6.4
Schematic of R

Here, A is the Turing machine Ppr) described by ¢((BT)). To preserve
the input w, we redesign ¢ so that P, g7 writes its output following any string
preexisting on the tape. After A runs, the tape contains w(BT).

Again, B is a procedure that examines its tape and applies ¢ to its contents.
The result is (A). Then B combines A, B, and T into a single machine and ob-
tains its description (ABT') = (R). Finally, it encodes that description together
with w, places the resulting string (R, w) on the tape, and passes control to 7.

TERMINOLOGY FOR THE RECURSION THEOREM

The recursion theorem states that Turing machines can obtain their own de-
scription and then go on to compute with it. At first glance, this capability may
seem to be useful only for frivolous tasks such as making a machine that prints a
copy of itself. But, as we demonstrate, the recursion theorem is a handy tool for
solving certain problems concerning the theory of algorithms.

You can use the recursion theorem in the following way when designing Tur-
ing machine algorithms. If you are designing a machine M, you can include the
phrase “obtain own description (M)” in the informal description of M’s algo-
rithm. Upon having obtained its own description, M can then go on to use it as
it would use any other computed value. For example, M might simply print out
(M) as happens in the TM SELF, or it might count the number of states in (M),
or possibly even simulate (M). To illustrate this method, we use the recursion
theorem to describe the machine SELF.

250 CHAPTER 6 / ADVANCED TOPICS IN COMPUTABILITY THEORY

SELF = “On any input:
1. Obtain, via the recursion theorem, own description (SELF).
2. Print (SELE)E

The recursion theorem shows how to implement the “obtain own descrip-
tion” construct. To produce the machine SELF, we first write the following
machine 7T'.

T = “On‘input (M, w):
1. Print (M) and halt.”

The TM T receives a description of a TM M and a string w as input, and it prints
the description of M. Then the recursion theorem shows how to obtain a TM £,
which on input w operates like T on input (R, w). Thus, R prints the descriptios
of R—exactly what is required of the machine SELF.

APPLICATIONS

A computer virus is a computer program that is designed to spread itself among
computers. Aptly named, it has much in common with a biological virus. Com-
puter viruses are inactive when standing alone as a piece of code. But when
placed appropriately in a host computer, thereby “infecting” it, they can becoms
activated and transmit copies of themselves to other accessible machines. Vari-
ous media can transmit viruses, including the Internet and transferable disks. I=
order to carry out its primary task of self-replication, a virus may contain the
construction described in the proof of the recursion theorem.

Let’s now consider three theorems whose proofs use the recursion theorem
An additional application appears in the proof of Theorem 6.17 in Section 6.2.

First we return to the proof of the undecidability of Aty. Recall that we ear-
lier proved it in Theorem 4.11, using Cantor’s diagonal method. The recursios
theorem gives us a new and simpler proof.

THEOREM 6.5

Atwm is undecidable.

PROOF We assume that Turing machine H decides Ay, for the purpose of
obtaining a contradiction. We construct the following machine B.

B = “On input w:
1. Obtain, via the recursion theorem, own description (B).
2. Run H on input (B, w).
3. Do the opposite of what H says. Thatis, accept if H rejects and
reject if H accepts.”

Running B on input w does the opposite of what H declares it does. Therefore.
H cannot be deciding Atm. Done!

6.1 THE RECURSION THEOREM 251

The following theorem concerning minimal Turing machines is another ap-
plication of the recursion theorem.

DEFINITION 6.6

If M is a Turing machine, then we say that the length of the descrip-
tion (M) of M is the pumber of symbols in the string describing M.
Say that M is minimal if there is no Turing machine equivalent to
M that has a shorter description. Let

MIN 1y = {(M)| M is a minimal TM}.

THEOREM 6.7

MIN T is not Turing-recognizable.

PROOF Assume that some TM E enumerates MIN 1y and obtain a contradic-
ton. We construct the following TM C.

C' = “On input w:
1. Obtain, via the recursion theorem, own description (C).
2. Run the enumerator F until a machine D appears with a longer
description than that of C.
3. Simulate D on input w.”

Because MIN Ty is infinite, E’s list must contain a TM with a longer descrip-
tion than C’ description. Therefore, step 2 of C eventually terminates with
some TM D that is longer than C. Then C simulates D and so is equivalent to it.
Because C is shorter than D and is equivalent to it, D cannot be minimal. But
D appears on the list that £ produces. Thus, we have a contradiction.

Our final application of the recursion theorem is a type of fixed-point theo-
rem. A fixed point of a function is a value that isn’t changed by application of
the function. In this case, we consider functions that are computable transforma-
tions of Turing machine descriptions. We show that for any such transformation,
some Turing machine exists whose behavior is unchanged by the transformation.
This theorem is called the fixed-point version of the recursion theorem.

252 CHAPTER 6 / ADVANCED TOPICS IN COMPUTABILITY THEORY

THEOREM 6.8

Let t: *—%* be a computable function. Then there is a Turing machime
F for which t((F)) describes a Turing machine equivalent to F. Here well
assume that if a string isn’t a proper Turing machine encoding, it describes &
Turing machine that always rejects immediately. '

In this theorem, ¢ plays the role of the transformation, and F" is the fixed point

PROOF Let F be the following Turing machine.
F = “On input w:
1. Obtain, via the recursion theorem, own description (F).

2. Compute t((F)) to obtain the description of a TM G.
3. Simulate G on w.”

Clearly, (F) and t((F)) = (G) describe equivalent Turing machines becauss
F simulates G.

Ol

DECIDABILITY OF LOGICAL THEORIES

Mathematical logic is the branch of mathematics that investigates mathematies
itself. It addresses questions such as: What is a theorem? What is a proof? Wha
is truth? Can an algorithm decide which statements are true? Are all true staze
ments provable? We’ll touch on a few of these topics in our brief introductios
to this rich and fascinating subject.

We focus on the problem of determining whether mathematical statemen=
are true or false and investigate the decidability of this problem. The answes
depends on the domain of mathematics from which the statements are draws
We examine two domains: one for which we can give an algorithm to decids
truth, and another for which this problem is undecidable.

First, we need to set up a precise language to formulate these problems. O
intention is to be able to consider mathematical statements such as

1. Vg3pVa,y [p>q A (z,y>1 = zy#p)],
2. Yab,e,n [(ab,c>0 An>2) — a™+b"#c" |, and
3. Vg 3pVr,y [p>q A (zy>1 — (zy#p A ay#p+2)) .

Statement 1 says that infinitely many prime numbers exist, which has bess
known to be true since the time of Euclid, about 2,300 years ago. Statement Z &
Fermat’s last theorem, which has been known to be true only since Andrew Wik
proved it in 1994. Finally, statement 3 says that infinitely many prime pairs’
exist. Known as the twin prime conjecture, it remains unsolved.

1 Prime pairs are primes that differ by 2.

