REDUCIBILITY

In Chapter 4 we established the ‘Turing machine as our model of a general pur-
pose computer. We presented several examples of problems that are solvable
on a Turing machine and gave one example of a problem, A1y, that is compu-
rationally unsolvable. In this chapter we examine several additional unsolvable
problems. In doing so, we introduce the primary method for proving that prob-
lems are computationally unsolvable. It is called reducibility.

A reduction is a way of converting one problem to another problem in such a
way that a solution to the second problem can be used to solve the first problem.
Such reducibilities come up often in everyday life, even if we don’t usually refer
to them in this way.

For example, suppose that you want to find your way around a new city. You
now that doing so would be easy if you had a map. Thus, you can reduce the
problem of finding your way around the city to the problem of obtaining a map
of the city.

Reducibility always involves two problems, which we call A and B. If A re-
duces to B, we can use a solution to B to solve A. So in our example, A is the
problem of finding your way around the city and B is the problem of obtaining
2 map. Note that reducibility says nothing about solving A or B alone, but only
about the solvability of A in the presence of a solution to B.

The following are further examples of reducibilities. The problem of travel-
ing from Boston to Paris reduces to the problem of buying a plane ticket between
the two cities. That problem in turn reduces to the problem of earning the
money for the ticket. And that problem reduces to the problem of finding a job.

215

216 CHAPTER 5 / REDUCIBILITY

Reducibility also occurs in mathematical problems. For example, the profiss
of measuring the area of a rectangle reduces to the problem of measuring &
length and width. The problem of solving a system of linear equations re s
to the problem of inverting a matrix.

Reducibility plays an important role in classifying problems by decida® a8
and later in complexity theory as well. When A is reducible to B, solvimg
cannot be harder than solving B because a solution to B gives a solution to £ &8
terms of computability theory, if A is reducible to B and B is decidable, A 2548
decidable. Equivalently, if A is undecidable and reducible to B, B is undecicaiis
This last version is key to proving that various problems are undecidable.

In short, our method for proving that a problem is undecidable will f &8
show that some other problem already known to be undecidable reduces t

D]

UNDECIDABLE PROBLEMS FROM
LANGUAGE THEORY \
\
We have already established the undecidability of Ay, the problem of desss
mining whether a Turing machine accepts a given input. Let’s consider a relass¥
problem, HA LT 1w, the problem of determining whether a Turing machine Hul8
(by accepting or rejecting) on a given input. This problem is widely known as 5
balting problem. We use the undecidability of Ay to prove the undecidabiiag
of the halting problem by reducing Aty to HALTty. Let

HALTty = {(M,w)| M is a TM and M halts on input w}.

THEOREM B.1 e pasiabdonsnnoimes Aatt Ayt ne o OO -

HALTt\ is undecidable.

PROOF IDEA This proof is by contradiction. We assume that HALT 7w &
decidable and use that assumption to show that Aty is decidable, contradictm
Theorem 4.11. The key idea is to show that Aty is reducible to HALT 1.
Let’s assume that we have a TM R that decides HA LT ty. Then we use & a0
construct S, a TM that decides Atu. To get a feel for the way to construct &
pretend that you are S. Your task is to decide Arm. You are given an inpus &
the form (M, w). You must output accept if M accepts w, and you must outps
reject if M loops or rejects on w. Try simulating M on w. If it accepts or rejecss
do the same. But you may not be able to determine whether M is looping, =&
in that case your simulation will not terminate. That’s bad because you are &
decider and thus never permitted to loop. So this idea by itself does not work. %

5.1 UNDECIDABLE PROBLEMS FROM LANGUAGE THEORY 217

Instead, use the assumption that you have TM R that decides HALT1y. With
R, you can test whether M halts on w. If R indicates that M doesn’t halt on w,
reject because (M, w) isn’t in Aty. However, if R indicates that M does halt on
v, you can do the simulation without any danger of looping.

Thus, if TM R exists, we can decide A1y, but we know that Aty is unde-
cidable. By virtue of this contradiction, we can conclude that R does not exist.
Therefore, HALT 1y is undecidable.

PROOF Let’s assume for the purpose of obtaining a contradiction that TM
R decides HALTtm. We construct TM S to decide Ary, with S operating as
follows.

S = “On input (M, w), an encoding of a TM M and a string w:
1. Run TM R on input (M, w).
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.
4. If M has accepted, accept; if M has rejected, reject.”

Clearly, if R decides HALT 1\, then S decides Atym. Because Aty is unde-
cidable, HAL Tty also must be undecidable.

Theorem 5.1 illustrates our strategy for proving that a problem is undecid-
able. This strategy is common to most proofs of undecidability, except for the
undecidability of Aty itself, which is proved directly via the diagonalization
method.

We now present several other theorems and their proofs as further examples
of the reducibility method for proving undecidability. Let

Erm = {(M)| MisaTMand L(M) = (}.

THEOREM 5.2

Etv is undecidable.

PROOF IDEA We follow the pattern adopted in Theorem 5.1. We assume
that Fty is decidable and then show that Aty is decidable—a contradiction.
Let R be a TM that decides Ery. We use R to construct TM S that decides A1y.
How will S work when it receives input (M, w)?

One idea is for S to run R on input (M) and see whether it accepts. If it does,
we know that L(M) is empty and therefore that M does not accept w. But if R
rejects (M), all we know is that L(M) is not empty and therefore that M accepts
some string—but we still do not know whether M accepts the particular string
0. So we need to use a different idea.

égﬁ S |

ik J

218 CHAPTER 5/ REDUCIBILITY

Instead of running R on (M), we run R on a modification of (M). We modif:
(M) to guarantee that M rejects all strings except w, but on input w it works 2
usual. Then we use R to determine whether the modified machine recognizes
the empty language. The only string the machine can now accept is w, so i
language will be nonempty iff it accepts w. If R accepts when it is fed a descrip-
tion of the modified machine, we know that the modified machine doesn’t acceps
anything and that M doesn’t accept w.

PROOF Let’s write the modified machine described in the proof idea using
our standard notation. We call it M.

M; = “On input z:
1l V=2 v frerect:
2. Ifz = w, run M on input w and accept if M does.”

'

This machine has the string w as part of its description. It conducts the tess
of whether z = w in the obvious way, by scanning the input and comparing =
character by character with w to determine whether they are the same.

Putting all this together, we assume that TM R decides Fry and construct T™
S that decides A1y as follows.

S = “On input (M, w), an encoding of a TM M and a string w:
1. Use the description of M and w to construct the TM M just
described.
2. Run R on input (M;).
3. If R accepts, reject; if R rejects, accept.”

Note that S must actually be able to compute a description of M; from :
description of M and w. It is able to do so because it only needs to add extrs
states to M that perform the x = w test.

If R were a decider for Ety, S would be a decider for Aty. A decider for
Atm cannot exist, so we know that Ery must be undecidable.

Another interesting computational problem regarding Turing machines con-
cerns determining whether a given Turing machine recognizes a language thas
also can be recognized by a simpler computational model. For example, we les
REGULAR~Tw be the problem of determining whether a given Turing machine l
has an equivalent finite automaton. This problem is the same as determining ‘
whether the Turing machine recognizes a regular language. Let

REGULARtw = {(M)| M isa TM and L(M) is a regular language}.

S-1 UNDECIDABLE PROBLEMS FROM LANGUAGE THEORY 219

THEOREM 5.3
REGULARty is undecidable,

assumption to construct a TM S that decides Aty. Less obvious now is how to
use R’s ability to assist S in its task. Nonetheless, we can do so.

The idea is for S to take its input (M, w) and modify M so that the result-
ing TM recognizes a regular language if and only if M accepts w. We call the
modified machine M,. We design M, to recognize the nonregular language
{0"1"|n > 0} if M does not accept w, and to recognize the regular language >*
if M accepts w. We must specify how S can construct such an M; from M and
v. Here, M, works by automatically accepting all strings in {0"1"| n > 0}. In
addition, if M accepts w, M3 accepts all other strings.

Note that the TM M, is 70z constructed for the purposes of actually running it
On some input—a common confusion. We construct Mj only for the purpose of

to exist. Once this decider Teturns its answer, we can use it to obtain the answer
to whether M/ accepts w. Thus, we can decide Atm, a contradiction.

PROOF We let R be a TM that decides REG ULARTy and construct TM S to
decide Aty. Then S works in the following manner.,

S = “On input (M, w), where M isa TM and w is a string:
1. Construct the following ™ MM,
M3 = “On input z:
1. If x has the form 0™1", accept.
2. If z does not have this form, run M on input w and
accept it M accepts w.”
2. Run R on input (My).
3% AR accepts, accept; if R rejects, reject.”

Similarly, the problems of testing whether the language of a Turing machine
s a context-free language, a decidable language, or even a finite language can
be shown to be undecidable with similar proofs. In fact, a general result, called
Rice’s theorem, states that determining any property of the languages recognized
by Turing machines is undecidable. We give Rice’s theorem in Problem 5.28.

So far, our strategy for proving languages undecidable involves a reduction

paid

ihe prsla

iply (8

220 CHAPTER 5/ REDUCIBILITY

machines is an undecidable problem. We could prove it by a reduction from
Atwm, but we use this opportunity to give an example of an undecidability proo
by reduction from Erp. Let

EQ+m = {{M1, M3)| My and M, are TMs and L(M;) = L(Ms)}.

THEOREM 5.4 e e e - ‘

EQ+y is undecidable.

PROOF IDEA Show that if EQ+y, were decidable, Ery also would be decid-
able by giving a reduction from Ery to EQty. The idea is simple. Fry is the
problem of determining whether the language of a TM is empty. EQqy, is the
problem of determining whether the languages of two TMs are the same. If one
of these languages happens to be (), we end up with the problem of determining
whether the language of the other machine is empty—that is, the Fry problem
So in a sense, the Ety problem is a special case of the EQ+y, problem wherein
one of the machines is fixed to recognize the empty language. This idea makes
giving the reduction easy.

PROOF We let TM R decide EQ+y and construct TM S to decide Ery as
follows.

S = “On input (M), where M is a TM:
1. Run R on input (M, M;), where M, is a TM that rejects all
inputs.
2. If R accepts, accept; if R rejects, reject.”

If R decides EQy, S decides Eryv. But Erw is undecidable by Theorem 5.2
so EQ+y also must be undecidable.

REDUCTIONS VIA COMPUTATION HISTORIES

The computation history method is an important technique for proving that
Atwm is reducible to certain languages. This method is often useful when the
problem to be shown undecidable involves testing for the existence of some-
thing. For example, this method is used to show the undecidability of Hilberts =
tenth problem, testing for the existence of integral roots in a polynomial. \
The computation history for a Turing machine on an input is simply the se-
quence of configurations that the machine goes through as it processes the input
It is a complete record of the computation of this machine.

5.1 UNDECIDABLE PROBLEMS FRom LANGUAGE THEORY 22]

DEFINITION 5.5

Let M be a "Turing machine and v an Input string. An accepting
computation history for M on) js a sequence of configurations,
City Egnenis’ C1, where C is the start configuration of M/ on w, C} is
an accepting configuration of)/ » and each C; legally follows from
Ci—1 according to the rules of M. A rejecting computation bis-
tory for M on w is defined similarly, except that Cl is a rejecting
configuration,

Computation histories are finite sequences. If A7 doesn’t halt on w, no accept-
Ag or rejecting computation history exists for A on 1. Deterministic machines
“aveatmost one computation history on any given input. N ondeterministic ma-
chines may have many computation histories on a single input, corresponding

DEFINITION 5.6

A linear bounded automaton is a Turing machine with a limited amount of
memory, as shown schematically in the following figure. Tt can only solve prob-
“SmS requiring memory that can fit within the tape used for the input. Using a
“ape alphabet larger than the input alphabet allows the available memory to be
mcreased up to a constant factor. Hence we say that for an mnput of length n, the
smount of memory available js linear in n—thus the name of this model.

FIGURE 5.7
Schematic of 3 linear bounded automaton

222 CHAPTER 5/ REDUCIBILITY

Despite their memory constraint, linear bounded automata (LBAs) are quis
powerful. For example, the deciders for Apra, Acre, Epra, and Ecgg all 2
[BAs. Every CFL can be decided by an LBA. In fact, coming up with a decidatis
language that can’t be decided by an [BA takes some work. We develop e
techniques to do so in Chapter 9.

Here, Aiga is the problem of determining whether an LBA accepts its input
Even though A ga is the same as the undecidable problem Atm where the Tus
ing machine is restricted to be an LBA, we can show that A ga is decidable. Les

Aiga = {(M,w)| M is an LBA that accepts string w}.

Before proving the decidability of A ga, we find the following lemma usef
It says that an LBA can have only a limited number of configurations when &
string of length n is the input.

LEMMA 5.8

Let M be an LBA with ¢ states and g symbols in the tape alphabet. There 2
exactly gng™ distinct configurations of M for a tape of length n.

PROOF Recall that a configuration of M is like a snapshot in the middle of ==
computation. A configuration consists of the state of the control, position of £
head, and contents of the tape. Here, M has ¢ states. The length of its tape is =
so the head can be in one of n positions, and g™ possible strings of tape symbeas
appear on the tape. The product of these three quantities is the total number &
different configurations of M with a tape of length n.

THEOREM 5.9 e

A\ ga is decidable.

PROOF IDEA In order to decide whether LBA M accepts input w, we simulas
M on w. During the course of the simulation, if M halts and accepts or rejecss
we accept or reject accordingly. The difficulty occurs if M loops on w. We ness
to be able to detect looping so that we can halt and reject.

The idea for detecting when M is looping is that as M computes on w. &
goes from configuration to configuration. If M ever repeats a configuration
it would go on to repeat this configuration over and over again and thus %
in a loop. Because M is an LBA, the amount of tape available to it is limited
By Lemma 5.8, M can be in only a limited number of configurations on ths
amount of tape. Therefore, only a limited amount of time is available to %
before it will enter some configuration that it has previously entered. Detecting
that M is looping is possible by simulating M for the number of steps given &
Lemma 5.8. If M has not halted by then, it must be looping.

5.1 UNDECIDABLE PROBLEMS FROM LANGUAGE THEORY 223

PROOF The algorithm that decides A ga is as follows.

L = “On input (M, w), where M is an LBA and w is a string:
1. Simulate M on w for gng™ steps or until it halts.
2. If M has halted, accept if it has accepted and reject if it has
rejected. If it has not halted, reject.”

If M on w has not halted within gng™ steps, it must be repeating a configura-
tion accordlng to Lemma 5.8 and therefore looping. That is why our algorithm
rejects in this instance.

Theorem 5.9 shows that LBAs and TMs differ in one essential way: For LBAs
the acceptance problem is decidable, but for TMs it isn’t. However, certain other
problems involving LBAs remain undecidable. One is the emptiness problem
Eiga = {(M)| M is an LBA where L(M) = 0}. To prove that Ej ga is undecid-
able, we give a reduction that uses the computation history method.

THEOREM 5.10

Eiga is undecidable.

PROOF IDEA 'This proof is by reduction from Aty. We show that if Ega
were decidable, Aty would also be. Suppose that i ga is decidable. How can
we use this supposition to decide Aty?

For a TM M and an input w, we can determine whether M accepts w by con-
structing a certain LBA B and then testing whether L(B) is empty. The language
that B recognizes comprises all accepting computation histories for M on w. If
M accepts w, this language contains one string and so is nonempty. If M does
not accept w, this language is empty. If we can determine whether B’s language
is empty, clearly we can determine whether M accepts w.

Now we describe how to construct B from M and w. Note that we need

10 show more than the mere existence of B. We have to show how a Turing
machine can obtain a description of B, glven descrlptlons of M and w.

As in the previous reductions we’ve given for proving undecidability, we con-
struct B only to feed its description into the presumed Ejga decider, but not to
run B on some input.

We construct B to accept its input z if z is an accepting computation history
for M on w. Recall that an accepting computation history is the sequence of
configurations, C1, Cy,, C; that M goes through as it accepts some string w.
For the purposes of this proof, we assume that the accepting computation history
is presented as a single string with the configurations separated from each other
by the # symbol, as shown in Figure 5.11.

224 CHAPTER 5/ REDUCIBILITY

Cl Cz 03 C[

FIGURE 5.11
A possible input to B

The LBA B works as follows. When it receives an input x, B is supposed &
accept if = is an accepting computation history for M on w. First, B breaks &
x according to the delimiters into strings C1, C2,..., C;. Then B determames
whether the C;’s satisfy the three conditions of an accepting computation histong

1. O is the start configuration for M on w.
2. Each C;; legally follows from Cj.
3. () is an accepting configuration for M.

The start configuration C for M on w is the string gowyws - - - Wy, Whes
qo is the start state for M on w. Here, B has this string directly built in. &
it is able to check the first condition. An accepting configuration is one T
contains the gaccepe State, so B can check the third condition by scanning ' %%
Gosenpiy - Dl second condition is the hardest to check. For each pair of adjaces
configurations, B checks on whether Cii1 legally follows from C;. This ssg
involves verifying that C; and C; are identical except for the positions umdies
and adjacent to the head in C;. These positions must be updated according to =
transition function of M. Then B verifies that the updating was done propes
by zig-zagging between corresponding positions of C; and C;41. To keep tradiy
of the current positions while zig-zagging, B marks the current position Wil
dots on the tape. Finally, if conditions 1, 2, and 3 are satisfied, B accepts &8
input.

By inverting the decider’s answer, we obtain the answer to whether M acceps
w. Thus we can decide ATy, a contradiction.

pProOOF Now we are ready to state the reduction of Aty to E ga. Suppess
that TM R decides Eiga. Construct TM S to decide Aty as follows.

S = “On input (M, w), where M is a TM and w is a string:
1. Construct IBA B from M and w as described in the proof idea.
2. Run R on input (B).
3. If R rejects, accept; if R accepts, reject.”

If R accepts (B), then L(B) = 0. Thus, M has no accepting computamis
history on w and M doesn’t accept w. Consequently, S rejects (M, w). Similasig
if R rejects (B), the language of B is nonempty. The only string that B ca8
accept is an accepting computation history for M on w. Thus, M must accept &
Consequently, S accepts (M, w). Figure 5.12 illustrates LBA B.

5.1 UNDECIDABLE PROBLEMS FROM LANGUAGE THEORY 225

B

[[#]x]e[afo]#]x][x]a[o]#]...]|

Nk =) (ol i)
Y Y

Ci Ci+ 1

FIGURE 5.12
LBA B checking a TM computation history

We can also use the technique of reduction via computation histories to es-
tablish the undecidability of certain problems related to context-free grammars
and pushdown automata. Recall that in Theorem 4.8 we presented an algo-
rithm to decide whether a context-free grammar generates any strings—that is,
whether L(G) = (. Now we show that a related problem is undecidable. It is the
problem of determining whether a context-free grammar generates all possible
strings. Proving that this problem is undecidable is the main step in showing
that the equivalence problem for context-free grammars is undecidable. Let

ALLcre = {(G)| Gis a CFG and L(G) = *}.

THEOREM 5.13

ALLcrg is undecidable.

PROOF This proof is by contradiction. To get the contradiction, we assume
that ALLcrg is decidable and use this assumption to show that Aty is decidable.
This proof is similar to that of Theorem 5.10 but with a small extra twist: Itis a
reduction from Aty via computation histories, but we modify the representation
f the computation histories slightly for a technical reason that we will explain
later.

We now describe how to use a decision procedure for ALLcrc to decide Aty.
For a TM M and an input w, we construct a CFG G that generates all strings if
and only if M does not accept w. So if M does accept w, G does not generate
some particular string. This string is—guess what—the accepting computation
history for M on w. That is, G is designed to generate all strings that are not
accepting computation histories for M on w.

To make the CFG G generate all strings that fail to be an accepting computa-
ton history for M on w, we utilize the following strategy. A string may fail to be
an accepting computation history for several reasons. An accepting computation
history for M on w appears as #C1 #C5# - - - #C)#, where C; is the configuration
of M on the ith step of the computation on w. Then, G generates all strings

226 CHAPTER 5/ REDUCIBILITY

1. that do not start with C,
2. that do not end with an accepting configuration, or
3. in which some C; does not properly yield C;;1 under the rules of M.

If M does not accept w, no accepting computation history exists, so 4/ strings
fail in one way or another. Therefore, G would generate all strings, as desired

Now we get down to the actual construction of G. Instead of constructime =
G, we construct a PDA D. We know that we can use the construction given
Theorem 2.20 (page 117) to convert D to a CFG. We do so because, for ous
purposes, designing a PDA is easier than designing a CFG. In this instance, D will
start by nondeterministically branching to guess which of the preceding thres
conditions to check. One branch checks on whether the beginning of the inpus
string is C; and accepts if it isn’t. Another branch checks on whether the inpus
string ends with a configuration containing the accept state, gaccept, and accepss
ifitisn’t.

The third branch is supposed to accept if some C; does not properly yieit
Cit1. It works by scanning the input until it nondeterministically decides thas
it has come to C;. Next, it pushes C; onto the stack until it comes to the end =
marked by the # symbol. Then D pops the stack to compare with C; 1. Thes
are supposed to match except around the head position, where the difference
is dictated by the transition function of M. Finally, D accepts if it discovers
mismatch or an improper update.

The problem with this idea is that when D pops C; off the stack, it is &
reverse order and not suitable for comparison with C4. At this point, the twis
in the proof appears: We write the accepting computation history different’s
Every other configuration appears in reverse order. The odd positions remai
written in the forward order, but the even positions are written backward. Thus
an accepting computation history would appear as shown in the following figure

o i = S e # iz # =
—_— e e N Sy
& B Cs G G

FIGURE 5.14
Every other configuration written in reverse order

In this modified form, the PDA is able to push a configuration so that when =
is popped, the order is suitable for comparison with the next one. We design &
to accept any string that is not an accepting computation history in the modifies
form.

In Exercise 5.1 you can use Theorem 5.13 to show that EQ g is undecidabie

234 CHAPTER 5/ REDUCIBILITY

548

MAPPING REDUCIBILITY

We have shown how to use the reducibility technique to prove that various profs
lems are undecidable. In this section we formalize the notion of reducibifs
Doing so allows us to use reducibility in more refined ways, such as for pros-
ing that certain languages are not Turing-recognizable and for applications &
complexity theory.

The notion of reducing one problem to another may be defined formally &
one of several ways. The choice of which one to use depends on the applicatios
Our choice is a simple type of reducibility called mapping reducibility.!

Roughly speaking, being able to reduce problem A to problem B by usmg
a mapping reducibility means that a computable function exists that convers
instances of problem A to instances of problem B. If we have such a converssas 5
function, called a reduction, we can solve A with a solver for B. The reason &
that any instance of A can be solved by first using the reduction to convert &
to an instance of B and then applying the solver for B. A precise definition &
mapping reducibility follows shortly. '

COMPUTABLE FUNCTIONS

A Turing machine computes a function by starting with the input to the funces
on the tape and halting with the output of the function on the tape.

DEFINITION 5.17

A function f: ¥*— ¥* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

EXAMPLE 5.18 .

All usual, arithmetic operations on integers are computable functions. For ==
ample, we can make a machine that takes input (m,n) and returns m + n, S
sum of m and n. We don’t give any details here, leaving them as exercises.

EXAMPLE 5.19

Computable functions may be transformations of machine descriptions. Far}
example, one computable function f takes input w and returns the descripmom
of a Turing machine (M’) if w = (M) is an encoding of a Turing machine M

1t is called many—one reducibility in some other textbooks.

5.3 MAPPING REDUCIBILITY 235

The machine M’ is a machine that recognizes the same language as M, but
never attempts to move its head off the left-hand end of its tape. The function
f accomplishes this task by adding several states to the description of M. The
function returns € if w is not a legal encoding of a Turing machine.

FORMAL DEFINITION OF MAPPING REDUCIBILITY

Now we define mapping reducibility. As usual, we represent computational
problems by languages.

DEFINITION 5.20

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — 3* where for every w,

weA<—fw) e B.
The function f is called the reduction from A to B.

The following figure illustrates mapping reducibility.

FIGURE 5.21
Function f reducing A to B

A mapping reduction of A to B provides a way to convert questions about
membership testing in A to membership testing in B. To test whether w € A,
we use the reduction f to map w to f(w) and test whether f(w) € B. The term
mapping reduction comes from the function or mapping that provides the means
of doing the reduction.

If one problem is mapping reducible to a second, previously solved problem,
we can thereby obtain a solution to the original problem. We capture this idea
in Theorem 5.22.

236 CHAPTER 5/ REDUCIBILITY

THEOREM 5.22
If A <,, B and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to &
We describe a decider N for A as follows.

N = “On input w:
1. ‘Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

Clearly, if w € A, then f(w) € B because f is a reduction from A to B. Thus
M accepts f(w) whenever w € A. Therefore, N works as desired. y

The following corollary of Theorem 5.22 has been our main tool for proving

undecidability.

COROLLARY 5.23
If A <,, B and A is undecidable, then B is undecidable.

Now we revisit some of our earlier proofs that used the reducibility method
to get examples of mapping reducibilities.

EXAMPLE 5.24 -

In Theorem 5.1 we used a reduction from Aty to prove that HALT 1y is un-
decidable. This reduction showed how a decider for HALT 1y could be used =
give a decider for Aty. We can demonstrate a mapping reducibility from A+
to HALT 1w as follows. To do so, we must present a computable function f thas
takes input of the form (M, w) and returns output of the form (M’, w’), where

(M,w) € Aty if and only if (M',w') € HALTtm.
The following machine F' computes a reduction f.

F = “On input (M, w):
1. Construct the following machine M.
M’ = “On input z:
1. Run M on z.
2. If M accepts, accept.
3. If M rejects, enter a loop.”
2. Output (M',w).”

A minor issue arises here concerning improperly formed input strings. If TM &
determines that its input is not of the correct form as specified in the input line
“On input (M, w):” and hence that the input is not in Atw, the TM outputs =

5.3 MAPPING REDUCIBILITY 237

string notin HALT 1. Any string not in HALT+y will do. In general, when we
describe a Turing machine that computes a reduction from A to B, improperly
formed inputs are assumed to map to strings outside of B.

EXAMPLE 5.25

The proof of the undecidability of the Post Correspondence Problem in Theo-
rem 5.15 contains two mapping reductions. First, it shows that Ay, =m MPCP
and then it shows that MPCP <m PCP. In both cases, we can easily ob-
tain the actual reduction function and show that it is a mapping reduction. As
Exercise 5.6 shows, mapping reducibility is transitive, so these two reductions
together imply that Aty <., PCP.

EXAMPLE 5.26

A mapping reduction from Ery to EQqy, lies in the proof of Theorem 5.4. In
this case, the reduction f maps the input (M) to the output (M, M), where M,
is the machine that rejects all inputs.

EXAMPLE 5.27

The proof of Theorem 5.2 showing that Ery is undecidable illustrates the dif-
ference between the formal notion of mapping reducibility that we have defined
in this section and the informal notion of reducibility that we used earlier in this
chapter. The proof shows that Ery is undecidable by reducing Ay to it. Let’s
see whether we can convert this reduction to a mapping reduction.

From the original reduction, we may easily construct a function f that takes
mnput (M, w) and produces output (M), where M; is the Turing machine de-
scribed in that proof. But M accepts w iff L(My) is not empty so f is a mapping
reduction from Aty to Ery. It still shows that FErwn is undecidable because
decidability is not affected by complementation, but it doesn’t give a mapping
reduction from Aty to Ery. In fact, no such reduction exists, as you are asked
to show in Exercise 5.5.

The sensitivity of mapping reducibility to complementation is important
in the use of reducibility to prove nonrecognizability of certain languages.
We can also use mapping reducibility to show that problems are not Turing-
recognizable. The following theorem is analogous to Theorem 5.22.

THEOREM 5.28

If A <., B and B is Turing-recognizable, then A is Turing-recognizable.

The proofis the same as that of Theorem 5.22, except that M and N are recog-
nizers instead of deciders.

238 CHAPTER 5 / REDUCIBILITY

COROLLARY 5.29 ’

If A <,, Band A is not Turing-recognizable, then B is not Turing-recognizable

In a typical application of this corollary, we let A be Aw, the complement
of Atm. We know that Aty is not Turing-recognizable from Corollary 4.23
The definition of mapping reducibility implies that A <,, B means the sams
as A <., B. To prove that B isn’t recognizable, we may show that Atm <m B
We can also use mapping reducibility to show that certain problems are neithes

Turing-recognizable nor co-Turing-recognizable, as in the following theorem.

THEOREM 5.30 o

EQ+y is neither Turing-recognizable nor co-Turing-recognizable.

PROOF First we show that EQy is not Turing-recognizable. We do so by
showing that Aty is reducible to EQry. The reducing function f works 2s
follows.

F = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and Mo.
M; = “On any input:
1. Reject.”
M5 = “On any input:
1. Run M on w. If it accepts, accept.”
2 Output <M1, M2>.”

Here, M; accepts nothing. If M accepts w, M3 accepts everything, and so the
two machines are not equivalent. Conversely, if M doesn’t accept w, M acceps
nothing, and they are equivalent. Thus f reduces Atm to EQry, as desired.

To show that EQqy is not Turing-recognizable, we give a reduction from
Aty to the complement of EQqy—namely, EQry. Hence we show thas
Atm <m EQmym. The following TM G computes the reducing function g.

G = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and Mo.
M; = “On any input:
1. Accept.”
M5 = “On any input:
1. Run M on w.
2. Ifitaccepts, accept.”
2. Output <M1, M2>.”

The only difference between f and g is in machine M;. In f, machine A/
always rejects, whereas in g it always accepts. In both f and g, M accepts w iff
M, always accepts. In g, M accepts w iff M; and M> are equivalent. That is whs
g is a reduction from Aty to EQ1y-

