
ÞECIDABILITY

In Chapter 3 we introduced the Turing machine as a model of a general purpose

.o-p.rier and defined rhe notion of algorithm in terms of Turing machines by

means of the Church:Iuring thesis.

In this chapter we begin to investigate the power of algorithms to solve prob-
lems. We demonstrate certain problems that can be solved algorithmically and

others that cannot. Our objective is to explore the limits of algorithmic solv-

ability. You are probably familiar with solvability by algorithms because much of
computer science is devoted to solving problems. The unsolvability of certâin
problems may come as a surprise.

Why should you study unsolvability? After all, showing that a problem is
unsolvable doesn't appear to be of any use if you have to solve it. You need

to sfudy this phenomenon for two reâsons. First, knowing when a problem is

algorithmically unsolvable ¿i useful because then you realize that the problem

must be simplified or altered before you can find an algorithmic solution. Like
âny tool, computers have capabilities and limitations that must be appreciated if
they are to be used well. The second reason is cultural. Even if you deal with
problems that clearly are solvable, a glimpse of the unsolvable can stimulate your
imagination and help you gain an important perspective on computation.

193

194 cHAPTER 4 / DEcIDABrLrrY

4.1
DECIDABLE LANGUAGES

In this section we give some examples of languages that are decidable by al-
gorithms. W'e focus on languages concerning automata and grammars. For
example, we present an algorithm that tests whether a string is a member of a

context-free language (CFL). These languages are interesting for several reasons.
First, certain problems of this kind are related to applications. This problem of
testing whether a CFG generates a string is related to the problem of recogniz-
ing and compiling progrâms in a programming language. Second, certain other
problems concerning automata and grammars are not decidable by algorithms.
Starting with exarnples where decidability is possible helps you to appreciate the
undecidable examples.

ÞECIÞI\BLE PROBLEMS CONCERNING
REGULAR LANGUAGES

We begin with certain computational problems concerning finite automata. We
give algorithms for testing whether a finite automaton accepts a string, whether
the language of a finite automaton is empry and whether two finite automâta are
equivalent.

Note that we chose to represent various computational problems by lan-
guages. Doing so is convenient because we have already set up terminology for
dealing with languages. For example, the a.cceptø.nce problern for DFAs of testing
whether a particular deterministic finite automaton accepts a given string can be
expressed as a language, .Aorn. This language contains the encodings of all DFAs

together with strings that the DFAs accept. Let

-4orA : { (8, ,)l B is a DFA that accepts input string tu}.

The problem of testing whether a DFA B accepts an input tu is the sâme as the
problem of testing whether (8, u) is a member of the language 1orn. Similarly,
we can formulate other computational problems in terms of testing membership
in a language. Showing that the language is decidable is the same as showing
that the computational problem is decidable.

In the following theorem we show that ,4p¡a is decidable. Hence this theorem
shows that the problem of testing whether a given finite automaton accepts a

given string is decidable.

THEOREM 4.I

4.1 DECIDABLE LANGUAGES I95

PRooF IDEA We simply need to present aIM IVI that decides ' orn'

Iu[: "Oninput (8, ur), where B is a DFA and tu is a string:

1. Simulate B on inPut to.

2. If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state' reject'"

pRooF We mention just a few implementation details of this proof. For

those of you familiar with writing pfograms in any standard programming lan-

gatâge, imagine how you would write a program to carry out the simulation.
"

F"irst, lei's exarnine the input (8,*).It is a representation of a DFA B together

with a string ru. One reasonable representation of B is simply a list of its five

components: Q,D,6,Çe, and F. when 1ru1 receives its input, M fitst determines

whether it properly represenrs a DFA B and a string tu. Ifnot, M teiects.

Then M cárries out the simulation directly. It keeps track of B's current

state and B's current position in the input tir by writing this information down

on its tape. Initially, B's current state is Çs and B's current input position_is

the leftmost symbol of ru. l['he states and position are updated,according !o,the-
specified tronrition function ô. When -421 finishes processing the last symbol of
*, NI urr"pts the inputif B is in an acceptingstate; M rejects the inputif B is

in a nonaccepting state.

We can prove a similar theorem for nondeterministic finite automata. Let

-Arura : {(B, r)l B is an NFA that accepts input string tu}.

THEOREM 4.2

.4.¡¡a is a decidable language.

pRooF We present a TM lyt that decides .Arurn. We could design N to operate

like IVI, simulaiing an NFA instead of a DFA. Instead, we'll do it differently to

illustrate a new id-ea, Have N use M as a subroutine. Because M is designed

to work with DFAs, 1ú first converts the NFA it receives as input to a DFA before

passing it to IVL

ly' : "On input (8, tu), where B is an NFA and tu is a string:

1. Convert NFA B to an equivalent DFA C' using the procedure for

this conversion given in llheorem 1'39.

2. Run TM IVI fromTheorem 4.1 on input (C, tu).

3. If ,421 accepts, accepl otherwise, reject."

Running TM IUI in stage 2 means incorporating M into the design of N as a

subprocedure.

k
/

I
I

.4¡s¡ is a decidable language.

196 cHAprER4/ÐEcrDABILrry

Sirnilarl¡ we call detennine whether a regular expression generates a given
string. Let ,4pE¡ : {(Ã, ro) | 1ì is a reg'lar expression that genèrates string-,rrr}.

.4pE¡ is a clecidable language.

pRooF The following TM P decides ,4pE¡.

P : ttO' input (1?,,rr.'), where -R is a reg'lar expression and .¿l is a stri'g:
1. Converr regular expression .R to an equivalent NFA / by using

the procedure for this conversion given in Theorem l.54.
2. Run TM ly' on input \A,u).
3. If ,Ày' accepts, u.tr:e,pt; if N rejects, re,.jer:t.r,

Tlreore'rs +,1, 4.2, a'd 4.3 illustrate thar, for decidability p'rposes, ir is
equivalent to presenr the Tirring machine with a DFA, an NFA, oi a iegular ex-
pression because the rnachine can convert one form of encocling to .r-roilr.r.

Now we turn ro a different kincl of problern concerninginire alltornara:
cmptiness testittg for the language of a finite auromaton. In the prececling three
theoretns we hacl to determine whether a finite autorììaton ...Ëpt, a paiticular
string. In the next proof we must cletermine whether or not a finite autornaton
accepts any strings at all. Let

Eort : {\A)l A is a DFA and L(A) : Ø}.

THEoREM 4.3

THEOREM 4.4
Eppa is a decidable language.

PRooF A DFA accepts some string iff reaching arì âccept state from the start
state by traveling along tl-re arrows of the DFA is possible. To test this condition,
we can clesign a TM ? that uses a marking algorithm sirnilar to that used in
Example 3.23.

T : "On input (A), where ,4. is a DFA:

1. Mark the srart srate of ,4.

2. Repeat until no new states get rnarkecl:
3, Mark any stare tlÌar has a transition coming into it from any

stâte thar is alreacly marked.
4, If no accept state is marked, arr:cpt; otherwise, reje.ct.rt

4,t DEcTDABLE LANGUAGEs 197

The next theorem states that deterrnining whether two DFAs recognize the
same language is decidable. Let

EQo*: {(A, B)l A and.B are DFAs and L(A) : L(B)}.

THEOREM 4.5

EQora is a deciclable language.

PRooF To prove this theorem, we use Theorem 4.4. We construct a new
DFA C from A ancl B, where C accepts only those strings that are accepted by
either ,4. or B but not by both. Thus, if ,zl and B recognize the same language,
C will accept nothing. llhe language of C is

L(c) : (Unt.Zøl) u (L(A)n ¿(r)).\ '/ \ ')
This expression is sometirnes called the symmetric difference of L(A) and ¿(B)
and is illnstrated in the following figure. Herc, L(A) is the cornplernent of tr(A).
The symmetric difference is useful here because L(C) : Ø]ff L(A) : L(B).
We can construct C from A and B with the constrllctions for proving the class

of regular languages closed under complernentation, union, and intersection.
These constructions are algorithms that can be carriecl out by Turir-rg machines.
Once we have constructed C, we can use Theorem 4.4 to test whether L(C) is

empty. If it is empt¡ L(A) and tr(B) must be equal.

F : "On input (,4, B), where A and B are DFAs:

l. Construct DFA C as described.
2. Run TM 7 from Theorem 4.4 on input (C).
3. IfZaccepts, acceltt. IfTrejects, reject."

L(A) L(B)

FIGURE 4.6
The symmetric difference of L(A) ancl l,(B)

k

198 cHAPTER 4 / DEcrDABrLrry

DECIDABLE PROBLEMS CONCERNING
CONTEXT-FREE LANGUAGES

Here, we describe algorithrns to determine whether a CFG generates a particular
string and to determine whether the language of a CFG is empty. Let

.Acrc : { (G, ,)l G is a CFG rhat generares string .ø}.

THEOREM 4.7

,46¡6 is a decidable language.

PRooF IDEA For CFG G and string tu, we want to determine whether G
generates tu. One idea is to use G to go through all derivations to determine
whether any is a derivation of u. This idea doesn't work, as infinitely many
derivations may have to be tried. If G does not generate tu, this algorithm would
never halt. This idea gives a Turing machine that is a recognizer, but not a

decider, for ,4ç¡6.
To make this Tirring machine into a decider, we need to ensure that the al-

gorithm tries only finitely many derivations. In Problem 2.26 (page 157) we
showed that if G were in Chomsþ normal form, any derivation of tu has 2n - I
steps, where n is the length of ,¿r. In that case, checking only derivations with
2n * | steps to determine whether G generates t¿ would be sufficient. Only
finitely many such derivations exist. W'e can converr G to Chomsþ normal
form byusing the procedure given in Section 2.I.

PRooF The TM
^9

for,4ç¡5 follows.

,9 : "On input (G, ru), where G is a CFG ancl ¿o is a string:
1. Convert G to an equivalent grâmmar in Chomsþ normal form.
2. List all derivations with2r¿- 1 sreps, where r¿ is the length of ru;

except if n : 0, then instead list all clerivations with one step.
3. Ifany ofthese derivations generate w, ctccept; if not, reject."

The problern of determining whether a CFG generâtes a parricular string is
related to the problem of compiling programming languages. The algorithm in
TM S is very inefficient and would never be usecl in practice, but it is easy to cle-
scribe ancl we aren't concerned with efficiency here. In Part Three of this book,
we address issues concerning the running time and nemory use of algorithrns.
In the proof of Theorem 7 .16, we describe a more efficient algorithm for rec-
ognizing general context-free languages. Even greater efficiency is possible for
recognizing deterministic context-free languages.

4.r DEcTDABLE LANGUAGEs 199

Recall that we have given procedures for converting back and forth between
CFGs and PDAs in Theorem 2.20. Hence everything we say about the decidability
of problerns concerning CFGs applies equally well to PDAs.

Let's turn now to the emptiness testing problern for the language of a CFG.

As we clid for DFAs, we can show that the problem of cletermining whether a CFG

generates any strings at all is deciclable. Let

Ecc : {(G)l G is a CFG and L(G) : t!}.

THEOREM 4.8

-86p6 is a decidable language.

PRooF IDEA To find an algorithrn for this problem, we might attempt to
trse TM ,S from Theorem 4.T . It states that we can test whether a CFG generates
some particular string t¿r. To determine whether L(G) : Ø, the algorithn might
try going through all possible tu's, one by one. But there are infinitely many tu's

to try, so this method could end up running forever. We neecl to take a different
approach.

In order to determine whether the language of a grammar is ernpry we need
to test whether the start variable can generate a string of terminals. The algo-
rithnr does so by solving a more general problem. It determines for eøch aøriøble
whether that variable is capable of generating a string of terminals. When the
algorithm has determined that a variable can generate some string of terminals,
the algorithm keeps track of this information by placing a mark on that variable.

First, the algorithm marks all the terminal symbols in the grammar. Then, it
scans all the rules of the grammar. If it ever finds a rule that permits some vari-
able to be replaced by some string of symbols, all of which are already marked,
the algorithm knows that this variable can be marked, too. The algorithm con-
tinues in this way until it cannot mark any adclitional variables. The TM ,R
implements this algorithm.

PROOF

-R: n'On input (G), where G is a CFG:

1. Mark all terminal syrnbols in G.
2, Repeat until no new variables get marked:

3 . Mark any variable ,4 where G has a rule A --+ UtUz. . ' ú/¡ ancl

each symbol Ut,. . ., [/¡ has already been markecl.

4. If the start variable is not marked, accept; otherwise, reject."

ì{

I

2OO cHAPTER4/DEcTDABILTTY

Next, we consider the problern of determining whether rwo context-free
gramlnârs generate the same languzrge. Let

IIQçc: {\G,11)l G ancl ll are CFGs and L(G) : L(H)).

Tlreorern 4.5 gave an algorithrn that clecicles the analogous language 1I()¡ç¡ for
finite automata. We used the clecision proceclure for E¡¡a to prove that EQ¡çs
is decidable. Because -Ðç¡6 also is decidable, you might think that we can use

a similar strâtegy to prove that EQç¡6 is deciclable. But solnetlìing is wrorrg
with this ideal Tlie class of context-free languages is rzol closecl uncler comple-
mentatioll or intersection, as you provecl in Exercise 2.2. In fact, EQ6¡6 is not
clecidable. llhe tecl-rnique for proving so is presentecl in Chapter 5.

Now we show that context-free languirges are cleciclable by'luring machines.

THEoREM 4.9

Every context-free language is cleciclable.

pRooF IDEA Let Abe a CFL. Our objective is to show that,4 is clecidable.

One (bad) idea is to convert a PDA for A clirectly into a TM. That isn't harcl to
clo because sirnulating a stack with the TM's rnore versatile tape is easy. The PDA

for ,4 rnay be noncleterministic, but that seems okay because we can convert it
into a noncleterministic TM and we lanclw that any nclncleterininistic TM can be

convertecl into an equivalent cleterministic TM. Yet, there is a difficulty. Sorne
branches of the PDA'.s computatiorì mav go on foreveq reading ancl writing the
stack without ever halting. tlhe sirnulating TM then woulcl also have solre non-
halting branches in its computation, ancl so the TM woulcl not be a clecicler. A
clifferent iclea is necessary. Instead, we prove this theorem with the TM 5 that we
designecl in'lheorem 4.7 to clecicle .zlcrc.

pRooF Let G be a CFG for A ancl clesig'n af M A,I¡; that clecicles A. We build
a copy of G into A,'16;.It works as follows.

IVIG : "Ou inputTrr:

1. Run TM 5- on input (G, rrr).

2. If this rnachine âccepts, a,trx'.1tt; if it rejects, x:.iu:t."

'l-heorern 4.9 provicles the final link in the relationship an"rong the f<rur ¡nain
classes of languages that we havc describecl so fìrr: regrlar, context-free, decicl-

able, ancl Tbr:ing-recognizable. tr'igure 4. l0 clepicts this relationship.

4.2 uNDEcrD¡.BrLrrY 2Ol

FIGURE 4.IO
The relationship arnong classes of l:rnguages

4.2
UNDECIDABILITY

In this section, we prove one of the rnost phiklsophically importirnt theoretns of
tl-re theory of conlputation: There is a specific problern that is algorithmically
unsolvable. Computers appear to be so powerftil that you may believe that all

probletns will eventually yielcl to them. -l'he theorem presented here clemon-

strates that computers are lintitecl in a hrnd¿rrnental way.

What sorts of problems are unsolvable by cornputer? A.r'e they esoteric'

dwelling only in tl-re mincls of theoretici¿rns? Nol Even some orclinary prob-
lems that per-rple want to scllve turn out to be computâtiollally unsolvable.

In one type of unsolvable problen, you are given I corrlplrter prograrn and

a precise specification of what that pr:ogram is supposecl to do (e.g., sort ir list
of numbers). You need to verify that the program perforrns as specified (i.e.,

that it is correct). Because both the progrâm ancl the specification are lnâthe-
matically precise objects, you hope to âutomâte the process of verification by
feecling these obl'ects into a suitably prograrnrned cotnputer. However, yotr will
be disappointecl. The general problem of software verification is not solvable by
corllputer.

In this section and in Chapter 5, yon will encounter several cornputationally
unsolvable problems. We aim to help you develop a feeling for the types of
problems that are unsolvable ancl to learn techniques for proving unsolvability,

Now we turn to onr first theorem that establishes the uncleciclability of a spe-

cific langrage: the problem of cletermining whether a
-lìring machiue accepts a

regrrlar

context-free

clecidable

Tùring-recognizable

I

2O2 cHAPTER 4 / DEcTDABILITY

given input string. We call it ,41¡¡ by analogy with ,4orn ancl ,4ç¡6. But, whereas

.Aorn ancl ,46p6 were decidable, ,41y is not. Let

-ArH¡ : {(M,u)l M ís a TM and jlzl accepts to}.

THEOREM 4. I I

,41¡a is undecidable.

Before we get to the proof, let's first observe that .zlrv is Turing-recognizable.
Thus, this theorem shows that recognizers øre more powerful than cleciclers.

Requiring a TM to halt on all inputs restricts the kinds of lang'uages that it can

recognize. The following Turing machine [/ recognizes ,4.r¡¡.

t/ : "On input (1v1, tu), where X,I is a TM ancl u, is a string:
1. Simulate ,4,f on input to.

2. If I\,1 ever enters its accept state, accept; if IvI ever enters its
reject state, reject."

Note that this rnachine loops on input (/r21, u) if lv[loops on 'tu, which is why
this machine does not decicle ,41¡y. If the algorithm had some way to deterrnine

that M wâs not l-ralting on tu, it could reject in this case. FIowever, an algorithm
has no way to r-nake this determination, as we shall see.

The Turing machine U is interesting in its own right. It is an exarnple of the
uniuersøl Tàn'ing m.achine first proposed by AIan Turing 1n 1936. 'llhis machine

is called universal because it is capable of simulating any other Turing machine

from the description of that machine. llhe universal Turing machine played an

important early role in the development of stored-progran computers'

THE DIAGONALIZATION METHOD

The proof of the undecidability of ,4rrv uses a technique called diøgona.lizøtion'

discovered by mathematician Georg Cantor in 1873. Cantor was concerned
with the problem of measuringthe sizes of infinite sets. If we have two infinite
sets, how can we tell whether one is larger than the other or whether they are of
the sarne size? For finite sets, of course, answering these questions is easy. We
sirnply count tlìe elements in a finite set, ancl the resulting number is its size. But
if we try to count the elements of an infinite set, we will never finish! So we can't
use the counting method to cletermine the relative sizes of infinite sets.

For example, take the set ofeven integers and the set ofall strings over {0,1}.
Both sets are infinite and thus larger than any finite set, but is one of the two
larger than the other? FIow can we compare their relative size?

Cantor proposed a rather nice solution to this problem. He obserwed that two
finite sets have the sarne size if the elements of one set can be paired with the
elements of the other set. This method compares the sizes without resorting to
counting. We can extend this idea to infinite sets. Here it is more precisely.

4.2 UNÞECIDABILITY 203

DEFINITION 4.I2

Assume that we have sets A and B ancl a function / frorn A to B '

Say tlrat f is one-to-one if tt never maps two different elements to

thå same place-that is, if /(n,) + f (b) whenever a + b' Say that

f is onto if it hitt every element of B-that is, if for every b e B
iher" is an r¿ € A such that '/(o) : b' Say that A and B are the søme

size ifthere is a one-to-one, onto function f : A---+B' A function

tlrat is botlr one-to-one and onto is called a correspondence. ln a

correspondence, every element of A maps to a unique element of
B ancl each element of B has a unique element of '4 mapping to it'
A correspondence is simply a way of pairing the elements of A with
the elements of B.

Alternative cortmon terminology for these rypes of functions ís injectìae for

one-to-one, surjeaiae for onto, and bijectìae for one-to-one and onto.

EXAMPLE 4.I3

DEFINITION 4.I4

A set A is countøble if either it is finite or it has the same size as 'l\/'

EXAMPLE 4.I5

Let N be the ser of natural numbers {I,2,3,. . .} and let t be the set of even

natural nunbers {2,4,6,...i. using cantor's clefinition of size, we cân see that

,A/ ancl á have the same size. The cãttespotrdence / mapping "Â,/ to t is simply

f (rr) : 2tt. We can visualize / more easily with the help of a table'

Of course, this example seems bizarre. Intuitively, t seems smaller than "iV be-

cause t is a proper subset of ,A/. But pairing each member of "l\/ with its own

member of å is possible, so we declare these t\,so sets to be the same size.

17 11,

2

4

b

1

2

I

I
.;
tsI

I

I
l.

¡¡
!
t
s

¡
Now we nrrn to an even stranger example. If we let a : {#l n7,n' e "A/i be the

set of positive rational numbeis, Q seems to be much larger than "A/. Yet these

tro ,.i, are the same size accorcling to our definition. We give a correspondence

witlr,,\/ to show that Q is countable. One easy way to do so is to list all the

2O4 cHAPTER 4 / DEcrÞABrLrry

elements of Q. Then we pair the first element on the list with the number I
from ,A/, the second element on the list with the number 2 from "A/, ancl so on.
We must ensure tl-rat every member of Q appears only once on the list.

To get this list, we make an infinite matrix containing all the positive ratio-
nal nurnbers, as shown in Figure 4.1ó. The,ith row contains all ntunbers with
numerator ¿ and the .ith colun-rn has all nurnbers with clenominator .1. So the
number] occurs in the ¿th row ancl ith column.

No- 1". flrrn this matrix into a list. One (bacl) way to attempt it would be to
begin the list with all the elements in the first row. That isn't a goocl approach
because the first row is infinite, so the list woulcl never get to the second row
Instead we list the elements on the diagonals, which are superimposed on the
cliagram, starting from the corner. llhe first cliagonal contains the single element

J, and the seconcl cliagonal contains the two elements I and |. So the first
three elernents on the list are J, f , and j. In the thircl diigonal,ã complication
arises. It contains f , |, and]. If we sin-rply aclcled these to the list, we would
repeat + : 4 We avoicl cloing so by skipping an elemenr when it woulcl cause
a repetition. So we add only the two new elements f and {. Continuing in this
way, we obtain a list of all the elements of Q.

FIGURE 4.I6
A correspondence of ,4,/ and Q

After seeing the correspondence of ,A/ ancl Q,you rnight think thâr any rwo
infinite sets can be shown to have the sarne size. After all, you need only clemon-
strate a correspondence, ancl this example shows that surprising correspondences
do exist. Howeveq for some infinite sets, no correspondence with ,l\/ exists.
Tlrese sets are simply too big. Such sets are callecl ancoantøble.

Tlre set of real numbers is an example of an uncountable set. A reøl nurnber
is one that has a decimal representation. The nurnbers r : 3.I41b926... and

4.2 UNDECIDABILITY 2O5

t/2 : t .4I42I35. . . are examples of real ¡umbers. Let R be the set of real

numbers. Cantor provecl that 7l is uncouutable. In cloing so, he introclucecl the

cliagonalization method.

THEOREM 4.I7

R is uncountable.

pROOF I¡ order to show that 7? is uncountable, we show that no colrespoll-

clence exists between ,A/ ancl 7?. Tl-re proof is by contradiction. Suppose that a

correspondence / existed between ,4,/ ancl 7?. Our job is to sh_ow that / fails to

*ork., it shoulcl. For it to be a corresponclence, / must pair all the members of
,,\/ with all the mernbers of R. But we will fincl an :u in R that is not pairecl with

anything in,A/, which will be our contradiction'
îh" ïry we fincl tl-ris r is by actually constrllctirlg it. We choose each digit

of ¿ to rrrrk. ll' clifferent from one of the real numbers that is pairecl with an

element of ,A/. In the encl, we are sufe that ¿ is clifferent frotn any real number

that is pairecl.
We can illustrate this idea by giving an exirmple. Suppose that the correspon-

dence / exists. Let f (t) :3'14159.. , f (2): 55'55555"'' /(3) : " ,

and so on, just to rnake up some values for ,/. Then / pairs the nunrber 1 with

3 . 141Sg . . . , th. nurnber 2 with SS . 55555 . . . , ancl so on. The following table

shows a few values of a hypothetical correspondence / between N and R'

I ("'
3. 14159

55.55555
o . 12345
0 .50000

ìç

IL

t
2
a

4

z
5

5

t
l-r

4

¡
4

!
4

tl

52

Þ
2

'W'e
construct the desired z by giving its clecimal representation. lt is a num-

ber between 0 and 1, so all its significant cligits are fractional digits following the

decimal point. Our objective is to ensure tltat r f /(n) for alry r1,' To ensure

that t: I /(1), we let the first digit of r be anything clifferent from the first

fractionaldigitrof/(r):3'14159""Arbitrarily,weletitbe4'Toensure
tl-nt r f f (ú, *.ler the seconcl cligit of ø be anything different from the seconcl

fra.tiorr.i,ìigi,s of f (z): ss.s5s5s5.... Arbitrarily, we letitbe 6. The thircl

fractional dig.it of /(s) : 0.12345. ' ' is 3, so we let ø be anytlring cliffererrt-

say, a. Contlntring in this way down the diagonal of the table.fot ,f ,we obtain

ali the cligits of .,,1r rho*n in the following table. We know that r is not /(rz)
for any ,r*b".n.,r" it clifïers frorn / (rz) in the r¿th fractional cligit' (A slight prob-

l"mnriresbecausecertainnumbers,suchasO.lggg...ancl0.2000...,areequal
even though their clecir-nal representations are clifferent. We avoid this problem

by never selecting the digits 0 or 9 when we construct;l;.)

1

Ã

206 cHAprER4/DEcrDABrLrry

3. 14159
55.55555

0 . 12345
0.500q0

r : 0.464I

4.2 UNDECIDAE¡ILITY 2O7

Thus we have shown that the set of all languages cannot be put into a corre-
spondence with the set of all Tirring rnachines. We conclude that some languages

are uot iecognized by any Turing nlachine.

AN UNDECIDABLE LANGUAGE

Now we are reacly to prove Theorem 4. 1 1, the unclecidability of the language

.4r¡¡ : { (/t1, to)l NI is a TM and ,Ar1 accepts rr.,}.

PRooF We assume that ,41¡7 is decidable and obtain a contradiction. Sup-
pose that 11 is a decider for,41¡¡. On input \lvI ,w), where 11,1 is a TM and ru is a

string, 11 halts and accepts if Jlrl accepts u.,. Furtherrnore, H halts and rejects if
M fails to accept'¿u. In other words, we assume that .I1 is a TM, where

H ((t,t,¿u)) : {or:rr,t
i[,M,accelrs w

-' t t
lTc

ject i[/ì 1 cloes not accepr ?u.

Now we construct a new Turing machine D with H as a subroutine. This
new TM calls 11 to determine what M does when the input to ,4¿l is its own
description (M). Once D has determined this information, it cloes the opposite'
That is, it rejects if Jìøl accepts and accepts if ilzl cloes not accept. The following
is a description of D.

D : "On input (Ji[), where M is a TM:

1. Run ,É1 on input (M , (lV)) .

2. Output the opposite of what 11 outputs. That is, if fi accepts,

reject; and if1l rejects, accept."

Don't be confused by the notion of running a machine on its own description!
That is similar to running â program with itself as input, something that does

occasionally occur in practice. For example, a compiler is a program that trans-
lates other progrâms. A compiler for the language Python may itself be written
in Python, so running that program on itself would make sense. In summary

D(uvr)): acce,pt if .4¡1 does not accept (,4/)

rejr:ct if M accepts (,421).

What happens when we run D with its own description (D) as input? In that
case, we get

D((D)) : acceptt if D cloes not accept (r)
rqect if D accepts (D).

No matter what D cloes, it is forced to do the opposite, which is obviously a

contradiction. Thus, neither TM D nor TM -I1 can exist.

The preceding theorem has an important application to the theory of com-
putation. It shows that some languages are not decidable or even Tìrring-
recognizable, for the reâson that there âre uncountably rnany languages y.t only
countably rnany Tùring machines. Because each Tìrring machine can recognize
a single language and there are more languages than Tìrring machines, iome
languages ¿re not recognized by any Turing machine. Suchlanguages are not
Turing-recognizable, as we state in the following corollary.

coRoLLARy 4.18

Some languages are not Turing-recognizable

PRooF To show that the set of all Turing machines is countable, we first
observe that the set of all srrings x* is countable for any alphabet x. With only
finitely many stri'gs of each length, we nìay form a list of t* by writing dowir
all strings of length 0, length l,length 2, and so on.

The set of all rìrring machines is countable because each rìrring machine ,4¿1

has an encoding into a string (M). If we simply omit those stringi rhar are nor
legal encodings of 'lìrring machines, we can obtain a list of all Tirring machines.

To show that the set of all languages is uncountable, we first obsen e that the
set of¿ll infinite binary sequences is uncountable. Ãn infinite binøry sequence is an
unending sequence of 0s and 1s. Let 6 be the set of all infinite binary sequences.
we can show that 6 is uncounrable by using a proof by diagonalization similar
to the one we usecl in Theorem 4.17 to show that 7? is uncountable.

Let L be the set of all languages over alphabet X. We show that ,C is un-
countable by giving a corresponclence with 6, thus showing that the two sets are
the same size. Let X* : {sr,s2,s3,...}. Each language A e Lhas a unique
sequence in 6. The zth bitofthatsequence is a 1 if s¿ € Aand is a 0 if s¿ / A,
which is callecl the chørøcterìstic seqaence of A. For example, if A were the lan-
guage of all strings srarring with a 0 over the alphabet {0,1}, its characteristic
sequence ¡¿ would be

X* : { €, 0, !, 00, 01, 10, 11, 000, 001, ... } ;A:{ o, oo,o1, ooo,oo1,..};
XA: 0 1 0 1 1 0 0 1 1 ...

The function f : L-+ß, where /(A) equals rhe characrerisric sequence of
,4., is one-to-one and onto, and he'ce is a correspondence. Thereforè, as 6 is
uncountable, .C is uncountable as well.

I

I

2Og cHAPTER4/DEcrDABrLrry

Let's review the steps of this proof. Assume that a TM 11 decides ,41¡¡. IJse 11

to builcl a TM D that takes an inplrr (,4/), where D acceprs its input (111) exactly
when &1 cloes not âccept its input (,4,1). Finally, run D on itself. Thus, the
tnachines take the f'ollowing actions, with the last line being the contradiction.

. 1/ âccepts \A,'I ,w) exactly when ,A/ acceprs ?r.

. D rejects (11,1) exactlywhen,4.,l accepts (,4,1).

. D rejects (D) exactlywhen D accepts (D).

Where is the diagonalization in the proof of Theorern 4. 1 1t It becomes ap-
parent when you exarnine tables of behavior for TMs H and D. In these tables
we list all TMs down the rows, I;1, ll,[z, . . . , and all their descriptions across the
coltrmns, (l\,It), \lulz), The entries tell whether the machine in a given row
accepts the input in a given column. The entry is arru:pt if the rnachine accepts
the input but is blank if it rejects or loops on that input. We nade up dre entries
in the following figure to illustrate the idea.

In tlre f-ollowing figur:e, we aclded D to Figure 4.20. By our assumption, 1/ is

a TM ancl so is D. Theref-ore, it tnust occur on the list A"11, A'I'2, ' ' ' of all TMs'

Note that , corrlptltes the oppr>site <>f the cliagonal entries. llhe contracliction

occrtrs at the point of the question tnark where the entry must be the rlpposite

of itself.

4,2 UNDECIDABILITY 2O9

A,I T
trI,¿ (Jr1,, A:lq

A,II

IVIz

A,It

A,I¿

atru:pt
a,tx:c'¡tt

te:ju:t
rr:.'ier:t

rr:,;irx:t

a,ar'.7tt

re..ju:t

rr'..'ju:t

aux:pt
o,rx:e1rt

rc,'jecl

atru:1tt

rt,u:t:'l¡t

0,cc?Qt

re.ju:t
o,rrc1tt

rr:ject
a,cct:pt

re.jcr:t

aur:'¡tt

D rc.jr:ct reju:t a'rxr.1rt ttrtt:1tt

FIGURE 4.I9
Entryz, j is o"cc:ept if ,id accepts (,4/¡)

In the following figure, the entries are rhe results of running 11 on inputs
corresponclingtoFigure4. 19. Soif,4,1¡doesnotacceprinput(,4,12),theentry
for row,4,13 and column (ri'Ir) is re.jer:tbecause 1/ rejects input (,4213, (h,tù).

1lJ1 A,Iz

FIGURE 4.2I
If D is in the figure, a contraclictiott occurs ¿ìt "?"

A TURI NG.UN RECOGN IZABLE LANGUAGE

In the prececling section, we exhibited a lang¡age-nameþ ,41¡¡-that is un-

cleciclable. Now we exhibit a language that isn't even Turing-recognizable'

Note that ,¡lrl¡ will not suffice for this purpose because we showed that ,41¡7

is Turing-recognizable (page 202). The following tlÌeorem shows tl-rat if both

a l.ng.rrlge ,n,fit, .o,npÎ"-"rtt are'lìtring-recognizable, the language is clecicl-

able. Hãnce for any unclecidable language, either it or its cornplelnent is l-lot

Tirriug-recognizable. Recall that the complement of a langlage is the language

consislting oiall strings that afe not in the language. We say that a langlage is co-

Tùtring-lecognizøble if it is the complelnelÌt of a Tirring-recognizable language.

THEOREM 4.22

A la¡guage is cleciclable iff it is Iìrring-recognizable ancl co-Tirring-recognizable.

In other worcls, a language is cleciclable extrctly when both it ancl its complelrent

are Tirring-reco gnizable.

pRooF We have two clirections to prove. First, if A is cleciclable, we can easily

see that both ,4 ancl its complelnent Z are Tirring-recognizable. A.ny cleciclable

language is Tirring-recognizable, ancl the complement of a cleciclable language

also is clecidable.

(Mr) (¡1e) $,:t,,) l¡
l\I t
T\,Iz

A,,IZ

l\,1,t

acceyt
act:ept

aur:pt

u,cr:e.pt

ar:cc.1¡rt

cu:cept

ou:ept au:c1tt

3

A,TI

lvlz
A,,IZ

A'I't

au:eytt

ar:ceyt

rr;.jrx:t

acce.pt

reju:t
o,rrx;pt

re.lju:t

o,ux:1tt

cux:eyt

o,u:ept

rejcc:t
rr;ljer:t

re..ju:t

ar:ce.pt

x:.jr:ct
rr;;ju:t

FIGURE 4.2O
Entry i,, j is the value of 11on input (nd, (,t1r.))

2lO cHAprER 4/ DEcrDABrLrry

For the other direction, if both A andÃ are Turing-recognizable, we let Jl,fi
be tlre recognizer for A and ll[z l¡e the recognizer for Z. The following Tìrring
machine AtI is a decider for,4.

1ll : t'Olr input rr':

1. Run both I\t[1 and IVI2 on input tu in parallel.
2. If Jìr211 accepts, acce,pt; ff IVI2 accepts, rrject."

Rnnning the two machines in parallel means tltat IvI has two tapes, one for simu-
lating lv't1and the other for simulating IvI2. rnrhis case, d,I takes turns simulating
one step of each machine, which continues until one of them accepts.

Now we show that M decides A. Every string ur is either in ,4 or ã. There-
fore, either IVII or ,4212 must accept tu. Because /¿1 halts whenever Mt or Mz
accepts, IvI always halts and so it is a decider. Furthermore, it accepts all strings
in A and rejects all strings nor in ,4. So M is a clecider for A, and thus ,4 is
decidable.

COROLLARY 4.23

7tr is not Turing-recognizable.

PRooF We know that,41¡¿ is Turing-recognizable. If 7ñ also were Turing-
recognizable, ,41¡a would be decidable. llheorern 4, 11 tells us drat ,41¡y is not
decidable, so ffi must not be Turing-recognizable.

EXERCISES
44.1 Ans-.r all parts for the following DFA À21 ancl give reâsons for your answers.

0,1

PRoBLEMs 2ll

4.2 Consider the problem of determining whether a DFA and a regular expression are

equivalent. Express this ploblem as a language and show that it is decidable.

4.3 Let ALL1ç¡: { (,4)l A is a DFA and L(A) : t. }. Show that ALL1ç¡ is clecidable.

4.4 Let Aeçp6 : {(G)l G is a CFG that generates e}. Show that,4ec¡c is decidable.

44.5 Let]lrv : {(M)l M is a TM and L(IV): Ø}. Show that BrH¡' the complement of
E1¡¡, is Tirring-recognizable.

4.6 Let X be the set {1,2,3,4,5} and Y be the set {6,7,8,9, 10}. We describe the

ftinctions f : X---+Y and g: X---+Y in the following tables. A¡rswer each part

and give a reason for each negative ans\¡,/er.

6

7
t)

6

f1T

1

2
D

4
5

1I(n I n,

10

I
8

7

6

1

2
t

4

5

Aa. Is / one-to-one? Ad. Is g one-to-one?

b. Is / onto? e. Is g onto?

.c, Is / a correspondence? f. Is g a correspondence?

4,7 Let6 be the set of all infinite sequences over {0,t}. Show that 6 is uncountable

using a proof by diagonalization.

4.8 LetT: {(i, j,k)| i,, j,k €¡/}. ShowthatTiscountable.

4.9 Review the way that we define sets to be the sarne size in Definition 4.12 (page 203).

Show that "is the same size" is an equivalence relation.

PROBLEMS

1

44.10

4.Ll

^+.12

4.13

A+,1+

Let lNFlNlTZoro : {(A)l A is a DFA and L(A) is an infinite language}' Show

that lNFlNlTEor¡ is decidable.

Ler INFINITE oo : {(M)l M is a PDA and L(luI) is an infinite language}. Show

that INFINIT4ppn is decidable.

Ler A : {\M}l NI is a DFA that cloesn't accept âny string containing an odd num-

ber of ts). Show that A is clecidable.

Ler A : {(Ê, S) I Ê and ,9 are regular expressions and I(r?) q ¿(S)}' Show that

A is deciclable.

Let X : {o,r}. Shov' that the problen of determining whether a CFG generates

some string in 1- is decidable. In other w<lrds, show that

{(c)l G is a CFG over {o,t} and 1* n L(G) + Ø}

is a decidable language.

0

a. Is (J1,1,0100) e ,4¡e¡?

b. Is (1'14,011) € ,4pea?

c. Is (À1) € .Aorel

d. Is (,4,1,0100) € Anex?

e. Is (,4,1) € Eo¡¡?

f. Is (11/, I\,1) e EQoro?

\

