
Note on Rice’s Theorem
The purpose of this note is to give some details of Rice’s Theorem and its proof. This theorem

is a useful tool in determining undecidability.

Recall that the set of all languages, P(Σ∗), is uncountable.
Let T = {〈M〉 |M is a Turing machine} be the set of all Turing machines. This set is countable.

Let R = {L(M) | 〈M〉 ∈ T} be the set of all Turing-recognizable languages. This set is also
countable. Rice’s Theorem helps identify languages which are not decidable. Specifically, it helps
identify undecidable languages which are subsets of T . These languages will all be sets of Turing
machine descriptions.

Definition 1. A set P ⊂ T is a property if, whenever L(M1) = L(M2), we have either that

• both 〈M1〉, 〈M2〉 ∈ P , or

• both 〈M1〉, 〈M2〉 6∈ P .

For example, the following are properties:

property P ⊆ T corresponding set of languages
{L(M) | 〈M〉 ∈ P} ⊆ R

{〈M〉 |M recognizes the language ∅} {∅}
{〈M〉 | on any input, M never halts and accepts} {∅}
{〈M〉 |M halts and accepts on only a finite number of input strings} {L | L ⊆ Σ∗ is finite}
{〈M〉 |M halts and rejects the input string ε} {L | L 63 ε}

Examples of sets that are not properties:

• {〈M〉 |M has more that 3 states}

• {〈M〉 |M accepts some string in ≤ 100 steps of computation}

• {〈M〉 |M uses $ in its tape alphabet}

So a property of a Turing machine is something that is true of the language it recognizes (and not
just a trivial feature of the machine). We will want to use the term “property” interchangeably to
refer to both a particular set P of Turing machines and to the set {L(M) | 〈M〉 ∈ P} of languages
recognized by those machines.

Definition 2. A property P is trivial if P = ∅ or P = T .

Rice’s Theorem. If P is any nontrivial property, then P is undecidable.

Proof. For the sake of contradiction, assume that P is decidable and let MP be the Turing machine
that decides P : MP accepts 〈M〉 if 〈M〉 ∈ P , and MP rejects 〈M〉 if 〈M〉 6∈ P . We will use MP to
build a Turing machine that decides HALTTM.

1

Case 1: Suppose there is some 〈M〉 ∈ P such that L(M) = ∅.
Let Mnope be be some Turing machine which does not have property P : 〈Mnope〉 6∈ P . We
know that Mnope exists because P is not a trivial property, so there has to be some Turing
machine not in P .

We design a Turing machine H to decide HALTTM using MP as a subroutine. This will
be the contradiction we aim for.

H =“on input 〈M,w〉 where M is a Turing machine and w is a string:

(1) Build a Turing machine J as follows:

J =“on input w:

(a) Simulate M on w.

(b) Then simulate Mnope on w. If it accepts, accept. If it rejects, reject.”

(2) Use MP to decide if 〈J〉 ∈ P . If it accepts, reject. If it rejects, accept.”

Notice that this construction means that either L(J) = ∅ or L(J) = L(Mnope). This Turing
machine H was designed with the goal that H should accept 〈M,w〉 if and only if 〈J〉 6∈ P .
The idea is that if P is decidable, then machine H can decide the halting problem.

Claim. H accepts 〈M,w〉 if and only if M halts on w.

Proof. If M halts on w then when J runs, it will finish step (a) and get to run step (b). This
means L(J) = L(Mnope), so J will not have property P (by the definition of a property).
Thus on line (2), the decider MP will reject 〈J〉, so H will accept.

If M does not halt on w, then J will loop on (a) forever, so it will never accept any string.
Thus L(J) = ∅, so we know that J does have property P (by the definition of the property
and by the first line of case 1, we know that machines recognizing the empty language have
the property), so on line (2), the decider MP will accept, so H will reject.

Observe that H is a decider, since step (1) is simply constructing a Turing machine, and
step (2) is running a decider.

Thus H is a decider for HALTTM. Contradiction! HALTTM is undecidable! ⇒⇐

Case 2: Suppose there is no 〈M〉 ∈ P such that L(M) = ∅.
Then a decider for P can be turned into a decider for P as follows:

Q =“on input 〈M〉 where M is a Turing machine:

(1) Run the decider for P on 〈M〉.
(2) If it accepted, reject. If it rejected, accept.”

Now we’ve reduced this case to case 1 (we have a decider for a property which contains
some M such that L(M) = ∅), so switch to case 1.

2

