
Note on ETM

The purpose of this note is to look at all the different tools we have for figuring out decidability,
recognizability, and co-recognizability. We’ll specifically use all these tools for ETM.

1 ETM is undecidable

How shall we prove this? Let me count the ways. . .

1.1 The fast way

Skip ahead to section 2.2 or 2.3 and show that ETM is not recognizable. Then by the theorem that
“a language is decidable iff it is both recognizable and corecognizable”, it must be that ETM is not
decidable.

1.2 By contradiction

S’pose that ETM were decidable by some Turing machine R. We will build a decider S for HALTTM

using R as a subroutine, as follows:
S = “On input 〈M,w〉:

(0) If 〈M,w〉 is not a properly formatted pair (Turing machine, string) then accept.

(1) Build a new machine N =


“On input x:
(a) Run M on input w.
(b) Accept.”

(2) Run R on input 〈N〉 and do the same.”
Now we need to verify that:

• S is a decider. Line 0 will stop in finite time. Line (1) is just building a Turing machine and
will also finish in finite time. Line (2) is just running a decider, so it finishes in finite time.

• If 〈M,w〉 ∈ HALTTM then S accepts it. There are two ways that 〈M,w〉 can be in HALTTM:
it can be badly formatted or it can be a properly (Turing machine, string) pair where the
Turing machine does not halt on that input string. If it’s badly formatted, then S will halt
on line (0) and accept. If it’s 〈M,w〉 where M is a Turing machine which does not halt on
w, then N will be a Turing machine which always loops, no matter what input x it gets, so
N will never accept any string x. This means that L(N) = ∅, so the decider R for ETM will
accept the input 〈N〉, so S will accept on line (2).

• If 〈M,w〉 6∈ HALTTM, then S rejects it. If 〈M,w〉 6∈ HALTTM then it must be that 〈M,w〉
encodes a Turing machine M which halts on input w. In that case, the constructed machine
N will always halt and accept on every input x, so L(N) = Σ∗, so decider R for ETM will
reject 〈N〉. Thus S will reject on line (2).

Ok, so we’ve built a decider for HALTTM. But HALTTM is undecidable! ⇒⇐

1

1.3 By mapping reduction

We need to reduce from a language which is not decidable to ETM. The guts of this reduction will
be very similar to the proof by contradiction method.
Let’s choose HALTTM as our undecidable language; we want to show that HALTTM ≤m ETM, so
we will build a computable function f where

w ∈ HALTTM ⇔ f(w) ∈ ETM

Define function f as follows:
Nrej = “On input x: reject.”

N = “On input x, run M on w and then accept.”

f(w) =

{
〈Nrej〉, if w is not an encoded pair 〈M,w〉
〈N〉, if w = 〈M,w〉

We need to check:

• This function f is computable by the following Turing machine:

S = “On input 〈M,w〉:
(0) If 〈M,w〉 is not an encoded pair (Turing machine, string) then erase the tape,
write 〈Nrej〉, and accept.

(1) Build a new machine N =


“On input x:
(a) Run M on input w.
(b) Accept.”

(2) Erase the tape, write 〈N〉, accept.”

Every step of S will terminate, so S will halt on all inputs; we can observe that S computes
f in both the cases exactly as f is defined.

• If w ∈ HALTTM then f(w) ∈ ETM. We can argue this like in the “by contradiction” proof

above, but let’s for fun argue by contrapositive instead: if f(w) 6∈ ETM then w 6∈ HALTTM,
that is, w ∈ HALTTM.

If f(w) 6∈ ETM then f(w) must encode a Turing machine T which recognizes a language that
is not empty, that is, f(w) = 〈T 〉 where T is a Turing machine that accepts some string.
Thus T is obviously not Nrej. So it must be that T is N from line (1), and if T accepts some
string, then we can see that it must be that “run M on w” halted. So M halts on w, so
〈M,w〉 ∈ HALTTM.

• If w 6∈ HALTTM then f(w) 6∈ ETM. If w 6∈ HALTTM then w ∈ HALTTM so w = 〈M,y〉 where
M is a Turing machine that halts on input y. Thus by construction f(w) will be 〈N〉 where
machine N runs M on y and then accepts, no matter what input N got. So L(N) 6= ∅ so
〈N〉 = f(w) 6∈ ETM.

2

1.4 Using Rice’s Theorem

ETM ⊂ LTM = {〈M〉 |M is a Turing machine} so ETM is a candidate for using Rice’s theorem.
We need to check that:

• ETM is not empty. It definitely contains 〈Nrej〉 where Nrej = “On input x: reject.” So ETM 6=
∅.

• ETM 6= LTM. It definitely does not contain 〈Nacc〉 where Nacc = “On input x: accept.” So
ETM 6= LTM.

• ETM is a property. If we have two Turing machines M1 and M2 where L(M1) = L(M2) then
either L(M1) = L(M2) = ∅ (and then 〈M1〉 and 〈M2〉 ∈ ETM) or L(M1) = L(M2) 6= ∅ (and
then 〈M1〉 and 〈M2〉 6∈ ETM). So ETM is a property.

Thus Rice’s theorem applies, so ETM is not decidable.

2 ETM is unrecognizable

2.1 The fast way

Skip back to section 1.2 or 1.3 and show that ETM is not decidable. Then skip ahead to section 3
and show that ETM is co-recognizable. Then by the theorem that “a language is decidable iff it is
both recognizable and corecognizable”, it must be that ETM is not recognizable.

2.2 By contradiction1

S’pose that ETM were recognizable by some Turing machine R. We will build a recognizer S for
HALTTM using R as a subroutine, as follows:

S = “On input 〈M,w〉:
(0) If 〈M,w〉 is not a properly formatted pair (Turing machine, string) then accept.

(1) Build a new machine N =


“On input x:
(a) Run M on input w.
(b) Accept.”

(2) Run R on input 〈N〉 and do the same.”

Now we need to verify that:

• S is a recognizer. Every Turing machine is a recognizer. This doesn’t need to be justified.

• If 〈M,w〉 ∈ HALTTM then S accepts it. There are two ways that 〈M,w〉 can be in HALTTM:
it can be badly formatted or it can be a properly (Turing machine, string) pair where the
Turing machine does not halt on that input string. If it’s badly formatted, then S will halt
on line (0) and accept. If it’s 〈M,w〉 where M is a Turing machine which does not halt on
w, then N will be a Turing machine which always loops, no matter what input x it gets, so
N will never accept any string x. This means that L(N) = ∅, so the recognizer R for ETM

will eventually accept the input 〈N〉, so S will accept on line (2).

1Note that I literally copy-pasted section 1.2 to this section, then updated “decidable” → ”recognizable” and
“reject” → ”reject or loop”, then reread it to check it makes sense. It does. The point is that you only need to think
through the guts of this proof once, the same guts might prove more than one thing we’re interested in proving.

3

• If 〈M,w〉 6∈ HALTTM, then S does not accept it. If 〈M,w〉 6∈ HALTTM then it must be that
〈M,w〉 encodes a Turing machine M which halts on input w. In that case, the constructed
machine N will always halt and accept on every input x, so L(N) = Σ∗, so the recognizer R
for ETM will either reject or loop on 〈N〉. Thus S will reject or loop on line (2).

Ok, so we’ve built a recognizer for HALTTM. But HALTTM is undecidable! ⇒⇐

2.3 By mapping reduction

See section 1.3 for a reduction HALTTM ≤m ETM. Since HALTTM is not recognizable, then ETM

is not recognizable.

3 ETM is co-recognizable

3.1 By construction

We will build a co-recognizer C for ETM.
C = “ On input 〈M〉:

(0) If 〈M〉 is not an encoding of a Turing machine, then reject.
(1) For i = 1, 2, 3, . . .:

(a) Run the enumerator for Σ∗ until it has printed the first i strings s1, s2, s3, . . . , si.
(b) Run M on each of these strings for i steps.
(c) If M accepted any of them, reject.”

We need to check that C is a co-recognizer for ETM:

• If 〈M〉 6∈ ETM then C rejects 〈M〉. If 〈M〉 6∈ ETM then either it is not an encoding of a Turing
machine (so C rejects on line (0)) or it is an encoding of a Turing machine M where L(M) 6= ∅,
so M accepts some string x. Since x ∈ Σ∗ the loop on line (1) will eventually get to a value
of i large enough that si = x. Since M accepts string x it will accept after some number of
steps k. On loop iteration number max(i, k) the machine C will run M on x for enough steps
that M accepts, so C will reject.

• If 〈M〉 ∈ ETM then C either accepts or loops on 〈M〉. First off, we wrote C and it never ac-
cepts — just look at it above! So we just need to argue that it loops in this case. If 〈M〉 ∈ ETM

then L(M) = ∅ so there are no strings which M accepts. (M is a machine that either loops or
rejects on every string.) Thus C will never trigger line (1c) since M never accepts. Similarly,
C will not trigger line (0) since 〈M〉 is an encoding of a Turing machine. So it must be that
C just continues to run the loop on line (1) forever. Hooray!

Thus we’ve built a co-recognizer for ETM.

3.2 Any other way

Don’t. Just use construction. Skip back to section 3.1.

4

	ETM is undecidable
	The fast way
	By contradiction
	By mapping reduction
	Using Rice's Theorem

	ETM is unrecognizable
	The fast way
	By contradictionNote that I literally copy-pasted section 1.2 to this section, then updated ``decidable'' ''recognizable'' and ``reject'' ''reject or loop'', then reread it to check it makes sense. It does. The point is that you only need to think through the guts of this proof once, the same guts might prove more than one thing we're interested in proving.
	By mapping reduction

	ETM is co-recognizable
	By construction
	Any other way

