executed, $x > y$. If $x/2 \geq y$, then $x \mod y < x \leq x/2$ and $x$ drops by at least half. If $x/2 < y$, then $x \mod y = x - y < x/2$ and $x$ drops by at least half.

The values of $x$ and $y$ are exchanged every time stage 3 is executed, so each of the original values of $x$ and $y$ are reduced by at least half every other time through the loop. Thus, the maximum number of times that stages 2 and 3 are executed is the lesser of $2 \log_2 x$ and $2 \log_2 y$. These logarithms are proportional to the lengths of the representations, giving the number of stages executed as $O(n)$. Each stage of $E$ uses only polynomial time, so the total running time is polynomial.

The final example of a polynomial time algorithm shows that every context-free language is decidable in polynomial time.

**Theorem 7.16**

Every context-free language is a member of $P$.

**Proof Idea** In Theorem 4.9, we proved that every CFl is decidable. To do so, we gave an algorithm for each CFl that decides it. If that algorithm runs in polynomial time, the current theorem follows as a corollary. Let's recall that algorithm and find out whether it runs quickly enough.

Let $L$ be a CFl generated by CFG $G$ that is in Chomsky normal form. From Problem 2.26, any derivation of a string $w$ has $2^n-1$ steps, where $n$ is the length of $w$ because $G$ is in Chomsky normal form. The reason for $L$ works by trying all possible derivations with $2^n-1$ steps when its input is a string of length $n$. If any of these is a derivation of $w$, the algorithm accepts; if not, it rejects.

A quick analysis of this algorithm shows that it doesn't run in polynomial time. The number of derivations of $k$ steps may be exponential in $k$, so this algorithm may require exponential time.

To get a polynomial time algorithm, we introduce a powerful technique called **dynamic programming**. This technique uses the accumulation of information about smaller subproblems to solve larger problems. We record the solution to any subproblem so that we need to solve it only once. We do so by making a table of all subproblems and entering their solutions systematically as we find them.

In this case, we consider the subproblems of determining whether each variable in $G$ generates each substring of $w$. The algorithm enters the solution to this subproblem in an $n \times n$ table. For $i \leq j$, the $(i, j)$ entry of the table contains the collection of variables that generate the substring $w_i w_{i+1} \cdots w_j$. For $i > j$, the table entries are unused.

The algorithm fills in the table entries for each substring of $w$. First it fills in the entries for the substrings of length 1, then those of length 2, and so on. It uses the entries for the shorter lengths to assist in determining the entries for the longer lengths.

For example, suppose that the algorithm has already determined which variables generate all substrings up to length $k$. To determine whether a variable $A$ generates a particular substring of length $k+1$, the algorithm splits that substring into two nonempty pieces in the $k$ possible ways. For each split, the algorithm examines each rule $A \rightarrow BC$ to determine whether $B$ generates the first piece and $C$ generates the second piece, using table entries previously computed. If both $B$ and $C$ generate the respective pieces, $A$ generates the substring and so is added to the associated table entry. The algorithm starts the process with the strings of length 1 by examining the table for the rules $A \rightarrow b$.

**Proof** The following algorithm $D$ implements the proof idea. Let $G$ be a CFG in Chomsky normal form generating the CFL $L$. Assume that $S$ is the start variable. (Recall that the empty string is handled specially in a Chomsky normal form grammar. The algorithm handles the special case in which $w = e$ in stage 1.) Comments appear inside double brackets.

$D =$ **On input $w = w_1 \cdots w_n$:**

1. **For $w = e$, if $S \rightarrow e$ is a rule, accept; else, reject. ($w = e$ case)**
2. **For $i = 1$ to $n$: examine each substring of length 1**
3. **For each variable $A$:**
4. **Text whether $A \rightarrow b$ is a rule, where $b = w_i$.**
5. **If so, place $A$ in table($i, i$).**
6. **For $i = 2$ to $n$:**
7. **For $i = 1$ to $n-i+1$:**
8. **If table($i, i$) contains $A$ and $A \rightarrow BC$:**
9. **Let $j = i + i - 1$:**
10. **For each rule $A \rightarrow BC$:**
11. **If table($i, k$) contains $B$ and table($k+1, j$) contains $C$, put $A$ in table($i, j$).**
12. **If $S$ is in table($1, n$), accept; else, reject.**

Now we analyze $D$. Each stage is easily implemented to run in polynomial time. Stages 4 and 5 run at most $n^2$ times, where $n$ is the number of variables in $G$ and is a fixed constant independent of $n$; hence these stages run $O(n^2)$ times. Stage 6 runs at most $n$ times. Each time stage 6 runs, stage 7 runs at most $n$ times. Each time stage 7 runs, stages 8 and 9 run at most $n$ times. Each time stage 9 runs, stage 10 runs $r$ times, where $r$ is the number of rules of $G$ and is another fixed constant. Thus stage 10, the inner loop of the algorithm, runs $O(n^r)$ times. Summing the total shows that $D$ executes $O(n^r)$ stages.