## CS46 Homework 2

This homework is due at 10:00PM on Sunday, February 9. Write your solution using LaTeX. Submit this homework using github. This is a 10 point homework.

This is an individual homework. It's ok to discuss approaches at a high level. In fact, I encourage you to discuss general strategies. However, you should not reveal specific details of a solution, nor should you show your written solution to anyone else. Your write-up is your own. If you use any out-of-class references (anything except class notes, the textbook, or asking Lila), then you must cite these in your post-homework survey. Please refer to the course webpage or ask me any questions you have about this policy.

The main **learning goal** of this homework is to develop the skills to design, understand, and analyze DFAs and regular languages.

**Part 1** — These problems should be completed<sup>1</sup> on Automata Tutor. You are allowed **three attempts** at each problem. I recommend that you *first* try to solve the problems on paper, *then* use the site to debug your solutions.

- 1. Construct a DFA for the language  $\emptyset$  over alphabet  $\Sigma = \{0, 1\}$ .
- 2. Construct a DFA for the language  $\{\varepsilon, 0\}$  over alphabet  $\Sigma = \{0, 1\}$ .
- 3. Construct a DFA for the language  $\{w \mid w \text{ is either } a \text{ or } b\}$  over alphabet  $\Sigma = \{a, b\}$ .
- 4. Construct a DFA for the language  $\{w \mid w \text{ is any string except } a \text{ or } b\}$  over alphabet  $\Sigma = \{a, b\}$ .
- 5. Construct a DFA for the language  $\{w \mid w \text{ contains at least three 1s}\}$  over alphabet  $\Sigma = \{0, 1\}$ .
- 6. Construct a DFA for the language  $\{w \mid \text{every } a \text{ in } w \text{ is immediately followed by a } b\}$  over alphabet  $\Sigma = \{a, b\}$ .
- 7. Construct a DFA for the language  $\{w \mid b \text{ occurs } n \text{ times in } w, \text{ where } n \text{ is divisible by } 3\}$  over alphabet  $\Sigma = \{a, b\}$ .
- 8. Construct a DFA for the language  $\{w \mid \text{ length of } w \leq 5\}$  over alphabet  $\Sigma = \{a, b\}$ .
- 9. Construct a DFA for the language  $\{w \mid w \text{ contains at least two 0s and at most one 1}\}$  over alphabet  $\Sigma = \{0, 1\}$ .
- 10. Construct a DFA for the language  $L = \{w \mid \text{ every odd position of } w = w_1 w_2 w_3 \dots w_n \text{ is a } 1\}$  over the alphabet  $\Sigma = \{0, 1\}$ .
- 11. Construct a DFA for the language  $L = \{w \mid w \text{ is any non-empty string}\}$  over the alphabet  $\Sigma = \{0, 1\}$ .
- 12. Construct a DFA for the language  $L = \{w \mid w \text{ begins and ends with the same symbol}\}$  over the alphabet  $\Sigma = \{0, 1\}$ . This language includes the empty string.

<sup>&</sup>lt;sup>1</sup>If you want to use late days on this assignment, you will need to submit solutions to these problems via github. The automatatutor site has only one deadline.

- 13. Construct an NFA for the language  $L = \{w \mid w \text{ contains an odd number of 1s or exactly two 0s}\}$  over the alphabet  $\Sigma = \{0, 1\}$ . Your NFA should have no more than six states.
- 14. Construct an NFA with two states for the language  $\{0\}$  over the alphabet  $\{0,1\}$ .
- 15. **Extra credit.** Construct a DFA for the language  $L = \{w \mid w \text{ is a binary number equal to 2 mod 5}$  over alphabet  $\Sigma = \{0, 1\}$ . (So  $0 \notin L$ ,  $10 \in L$ ,  $100 \notin L$ , etc.)

Part 2 — These problems should be typeset in LATEX and submitted using github.

16. Write a concise English description of the language recognized by DFA  $M_1$ .



Figure 1: DFA  $M_1$ 

17. Write a concise English description of the language recognized by DFA  $M_2$ .



Figure 2: DFA  $M_2$ 

18. Write a concise English description of the language recognized by DFA  $M_3$ .



Figure 3: DFA  $M_3$ 

19. Let  $\Sigma = \{a, b, c, \dots, z\}$ . For any language  $A \subseteq \Sigma^*$ , let the **contrary** of A be defined as:

$$contrary(A) = \{antiw \mid w \in A\}$$

For example, if  $A = \{unicorn, pony, tricycle\}$ , then

 $contrary(A) = \{antiunicorn, antipony, antitricycle\}$ 

Prove that the class of regular languages is closed under the "contrary" operator. (That is, prove that if A is regular, then contrary (A) is regular. You should describe how to construct a machine that recognizes contrary (A), define all elements of your machine  $M = (Q, \Sigma, \delta, q_0, F)$ , and argue why this machine recognizes contrary (A).)

20. (extra credit) For languages A and B, let the perfect shuffle of A and B be the language:

$$\{w \mid w = \sigma_1 \gamma_1 \sigma_2 \gamma_2 \cdots \sigma_k \gamma_k \text{ where } \sigma_1 \cdots \sigma_k \in A \text{ and } \gamma_1 \cdots \gamma_k \in B \text{ and each } \sigma_i, \gamma_i \in \Sigma\}$$

Prove that the class of regular languages is closed under perfect shuffle.