CS46 Homework 10

This homework is due at 10pm Sunday, May 3. Submit on github as a file called hw10.tex.

For this homework, you will work with a partner or alone. It’s ok to discuss approaches at a
high level with other students, but most of your discussions should just be with your partner. Your
partnership’s write-up is your own: do not share it, and do not read other teams’ write-ups. If you
use any out-of-class references (anything except class notes, the textbook, or asking Lila), then you
must cite these in your post-homework survey. Please refer to the course webpage or ask me any
questions you have about this policy. or ask me any questions you have about this policy.

1. Recall that a vertex cover in a graph G is a subset of vertices where every edge of G has at
least one endpoint in the subset.

VERTEXCOVER = {(G, k) | G has a k-node vertex cover }

Theorem 7.44 says that VERTEXCOVER is NP-COMPLETE.

An independent set in a graph G is a subset of vertices with no edges between them.

INDEPENDENTSET = {(G, k) | G contains an independent set of k vertices }

‘We will show that INDEPENDENTSET is NP-COMPLETE.

(a) Prove that INDEPENDENTSET € NP.

(b) Prove that INDEPENDENTSET is NP-HARD.
(Hint: reduce from VERTEXCOVER. This is not the same direction you did in lab, but
you might be able to use the same idea as the core of your reduction.)

2. Show that if P = NP, then every language A € P is NP-complete except A = () and A = X*.

3. A regular expression is *-free (pronounced “star-free”) if it does not include any Kleene stars,
so for example the regular expression “(1U0)00”’ is *-free but “0*(1 U 11)” is not *-free.

Consider the language:

L = {(R1,R2) | R1 and Ry are *-free regular expressions and L(R;) # L(R2)}
We will prove that L is NP-COMPLETE, using a reduction from SAT.

(a) Show that L € NP by giving a deterministic polynomial-time verifier and describing the
certificate strings it uses to check membership in L. (Make sure your verifier can’t be
fooled by a bad certificate!)

(b) Given a formula ¢ in conjunctive normal form, write a regular expression that matches
the language:
{w | w encodes a truth assignment for ¢}

(c) Given a set of n literals {aq, ag, ..., ay}, consider the clause:
c=a1VayV: --Vay,
Write a regular expression that matches the language:

{w | w encodes a truth assignment which does not satisfy c}


https://www.cs.swarthmore.edu/amelia/fontes/pollster/

(d) Given a formula ¢ in conjunctive normal form, write a regular expression that matches
the language:

{w | w encodes a truth assignment which does not satisfy ¢}

(Use part (c).)

(e) Use parts (b) and (d) to give a polynomial-time reduction from SAT to L. Conclude that
L is NP-coMPLETE. (Hint: If you want to, you may assume throughout this problem
that formulas in SAT are always in conjunctive normal form.)

. (extra credit)

2-SaT = 4 (15) © is a satisfiable formula in conjunctive normal form
¥ with exactly two literals per clause
We will prove that 2-SAT € P.

Any clause (z V y) with two literals can be thought of as two implications T = y and y = «.
The clause (z V x) can be thought of as T = x. If we then consider z = y as a directed edge
from vertex z to vertex y, we can construct an “implication graph” from any 2-CNF formula

®.
(a) Show that a 2-CNF formula is unsatisfiable if and only if there is a variable x such that
in the implication graph, there is a path from x to T and from 7 to x.

(b) Design an algorithm based on this fact to show that 2-SAT € P.

. (extra credit) Show that if P N NP-HARD # (), then P = NP.



