
Note on Rice’s Theorem
The purpose of this note is to give some details of Rice’s Theorem and its proof. This theorem

is a useful tool in determining undecidability.

Recall that the set of all languages, P(Σ∗), is uncountable.
Let T = {〈M〉 |M is a Turing machine} be the set of all Turing machines. This set is countable.

Let R = {L(M) | 〈M〉 ∈ T} be the set of all Turing-recognizable languages. This set is also
countable. Rice’s Theorem helps identify languages which are not decidable. Specifically, it helps
identify undecidable languages which are subsets of T . These languages will all be sets of Turing
machine descriptions.

Definition 1. A set P ⊂ T is a property if, whenever L(M1) = L(M2), we have either that

• both 〈M1〉, 〈M2〉 ∈ P , or

• both 〈M1〉, 〈M2〉 6∈ P .

For example, the following are properties:

property P ⊆ T corresponding set of languages
{L(M) | 〈M〉 ∈ P} ⊆ R

{〈M〉 |M recognizes the language ∅} {∅}
{〈M〉 | on any input, M never halts and accepts} {∅}
{〈M〉 |M halts and accepts on only a finite number of input strings} {L | L ⊆ Σ∗ is finite}
{〈M〉 |M halts and rejects the input string ε} {L | L 63 ε}

Examples of sets that are not properties:

• {〈M〉 |M has more that 3 states}

• {〈M〉 |M accepts some string in ≤ 100 steps of computation}

• {〈M〉 |M uses $ in its tape alphabet}

So a property of a Turing machine is something that is true of the language it recognizes (and not
just a trivial feature of the machine). We will want to use the term “property” interchangeably to
refer to both a particular set P of Turing machines and to the set {L(M) | 〈M〉 ∈ P} of languages
recognized by those machines.

Definition 2. A property P is trivial if P = ∅ or P = T .

Rice’s Theorem. If P is any nontrivial property, then P is undecidable.

Proof. For the sake of contradiction, assume that P is decidable and let MP be the Turing machine
that decides P : MP accepts 〈M〉 if 〈M〉 ∈ P , and MP rejects 〈M〉 if 〈M〉 6∈ P . We will use MP to
build a Turing machine that decides HALTTM.

1



Case 1: Suppose there is some 〈M〉 ∈ P such that L(M) = ∅.
Let Mnope be be some Turing machine which does not have property P : 〈Mnope〉 6∈ P . We
know that Mnope exists because P is not a trivial property, so there has to be some Turing
machine not in P .

We design a Turing machine H to decide HALTTM using MP as a subroutine. This will
be the contradiction we aim for.

H =“on input 〈M,w〉 where M is a Turing machine and w is a string:

(1) Build a Turing machine J as follows:

J =“on input w:

(a) Simulate M on w.

(b) Then simulate Mnope on w. If it accepts, accept. If it rejects, reject.”

(2) Use MP to decide if 〈J〉 ∈ P . If it accepts, reject. If it rejects, accept.”

Notice that this construction means that either L(J) = ∅ or L(J) = L(Mnope). This Turing
machine H was designed with the goal that H should accept 〈M,w〉 if and only if 〈J〉 6∈ P .
The idea is that if P is decidable, then machine H can decide the halting problem.

Claim. H accepts 〈M,w〉 if and only if M halts on w.

Proof. If M halts on w then when J runs, it will finish step (a) and get to run step (b). This
means L(J) = L(Mnope), so J will not have property P (by the definition of a property).
Thus on line (2), the decider MP will reject 〈J〉, so H will accept.

If M does not halt on w, then J will loop on (a) forever, so it will never accept any string.
Thus L(J) = ∅, so we know that J does have property P (by the definition of a property),
so on line (2), the decider MP will accept, so H will reject.

Observe that H is a decider, since step (1) is simply constructing a Turing machine, and
step (2) is running a decider.

Thus H is a decider for HALTTM. Contradiction! HALTTM is undecidable! ⇒⇐

Case 2: Suppose there is no 〈M〉 ∈ P such that L(M) = ∅.
Then a decider for P can be turned into a decider for P as follows:

Q =“on input 〈M〉 where M is a Turing machine:

(1) Run the decider for P on 〈M〉.
(2) If it accepted, reject. If it rejected, accept.”

Now we’ve reduced this case to case 1 (we have a decider for a property which contains
some M such that L(M) = ∅), so switch to case 1.

2


