
Notes on the Myhill-Nerode Theorem
The purpose of this note is to give some details of the Myhill-Nerode Theorem and its proof,

neither of which appear in the textbook. This theorem will be a useful tool in designing DFAs, as
well as in characterizing the regular languages.

Definition 1. Let L ⊆ Σ∗ be any language, and x, y ∈ Σ∗ be any strings. We say “x is equivalent
to y with respect to L”, written x ≈L y iff, for any z ∈ Σ∗,

xz ∈ L ⇐⇒ yz ∈ L

Observe: ≈L is an equivalence relation: it is reflexive, symmetric, and transitive. You should
check this to convince yourself.

We will be interested in decomposing a language into its equivalence classes, which we write as:

[x] = {y | x ≈L y} is the equivalence class of x under ≈L

For example, consider L = {w | w is of even length} ⊆ {a}∗. The equivalence classes of L are:

• [ε] = {ε, aa, aaaa, aaaaaa, . . .} = [aa] = [aaaa] = L

• [a] = {a, aaa, aaaaa, . . .} = {w | w is of odd length} = [aaa] = [aaaaaaa] = · · ·

Notice that [a] = L̄ is the complement of L, so this is all the equivalence classes. Also, note that
[ε] = [aa] = [aaaa] (and so on), so we can call an equivalence class by many different names.

Theorem 2 (Myhill-Nerode Theorem). L is regular if and only if ≈L has finitely many equivalence
classes.

The idea is that each equivalence class will correspond to a state of the DFA. (This makes sense,
since if x and y are in the same equivalence class, then for any string z we concatenate to the end,
xz ∈ L ⇐⇒ yz ∈ L — that is, we want the DFA to either accept both xz and yz or reject both
of them. This will correspond to starting from the same state, and then processing the characters
of string z.)

Proof. There are two directions of the “if and only if”.
⇐: If L is regular, then there is a DFA recognizing L which has finitely many states. Each

state represents an equivalence class (of strings that reach that state). Consider two strings x and
y which both finish in some state qi. Then for any string z, the computation on xz will end up in
the same state as the computation for yz, namely, whatever state the DFA reaches when it starts
in state qi and sees string z.

Since there are finitely many states and each state represents an equivalence class, there are
finitely many equivalence classes.
⇒: If L has finitely many equivalence classes, then there is a DFA recognizing L with exactly

that many states. We can construct it as follows. Define DFA M = (Q,Σ, δ, q0, F ):

K = {[x] | x ∈ Σ∗}
q0 = [ε]

F = {[x] | x ∈ L}
δ([x], σ) = [xσ] for [x] ∈ Q, σ ∈ Σ

Note: δ is well-defined because x ≈L y iff xσ ≈L yσ.
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Some observations to make:

• for any string x, it is in some equivalence class [x] and it will end up in the state corresponding
to [x]

• for any string x, if x ∈ L then the state corresponding to [x] is a final state (by the construction
rule given above), so x will be accepted

• for any string x 6∈ L, the state corresponding to [x] is not a final state. Why?
A tiny proof-by-contradiction:
Suppose x 6∈ L but the state q corresponding to [x] was in F .
Because q ∈ F , it must be that [x] = [y] for some y ∈ L (by the construction rule given above
for set F ).
If these two equivalence classes are equal, that means x ≈L y (by definition of equivalence
classes).
Thus for all z, xz ∈ L ⇐⇒ yz ∈ L.
Take z = ε. Then we have xε = x ∈ L is false but yε = y ∈ L is true. Contradiction! ⇒⇐

Thus the DFA given by this construction recognizes the language L.

Corollary 3. Let L be a language with k ∈ N equivalence classes under ≈L. Then every DFA
recognizing L has at least k states.

And note, for L with k equivalence classes, the above construction gives a DFA with exactly k
states — a minimal DFA, the smallest one possible.1

Practice problem 1: Consider again the example language: L = {w | w is of even length} ⊆
{a}∗. The equivalence classes of L are:

• [ε] = {ε, aa, aaaa, aaaaaa, . . .} = [aa] = [aaaa] = L

• [a] = {a, aaa, aaaaa, . . .} = {w | w is of odd length} = [aaa] = [aaaaaaa] = · · ·

The Myhill-Nerode Theorem says that because L has finitely many equivalence classes2, it
should be a regular language. Can you use the insight of the proof to come up with a (very, very
simple) DFA that accepts this language L? (Ideally, you would only have as many states as there
are equivalence classes.) Answer on the next page.

Practice problem 2: Consider the language:

L = {w ∈ {0, 1} | w represents a number divisible by 3 in binary notation}

How many equivalence classes does this L have? What are they? Can you come up with a DFA to
recognize this language?

1Fun thought experiment and proof-writing practice: why would any smaller DFA not be able to recognize L?
2Check for yourself: how many are there? 2. Sanity check: is 2 finite? Yeah.
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