CS46 practice problems 2

These practice problems are an opportunity for discussion and trying many different solutions. They are **not counted towards your grade**, and you **do not have to submit your solutions**. The purpose of these problems is to get more comfortable with DFAs and with using the [Automata Tutor](http://www.automatatutor.com) site. I recommend trying to solve these problems on paper *first*, then trying with the online tool. Once you are ready to test your solutions, the site will give you troubleshooting feedback.

For all of these problems, Σ = \{a, b\}.

0. Go to www.automatatutor.com and create a login. On the left-side panel, go to “Courses” and enroll in this course with:

 - Course ID: 119SWARTH
 - Course Password: ZDNEIXB5

 Under “Courses” you should see “Swarthmore CS46-17s”. Clicking “Show” will take you to your active problemsets, which includes “Practice problems 1”, which corresponds to the problems on this page.

1. Construct a DFA for the language \{w \mid w \text{ contains the substring } ab\}.

2. Construct a DFA for the language \{w \mid w \text{ does not contain the substring } ab\}.

3. Construct a DFA for the language \{w \mid w \text{ contains the substring } baba\}.

4. Construct a DFA for the language \{w \mid w \text{ does not contain the substring } baba\}.

5. Construct a DFA for the language \{aa, abba\}.

 You might consider breaking this problem into pieces:

 (a) Construct a DFA for the language \{aa\}.

 (b) Construct a DFA for the language \{abba\}.

 (c) Use the proof idea from theorem 1.25 (regular languages are closed under union) to construct a new DFA for the union language from your two simpler DFAs.

6. Construct a DFA for the language \{w \mid w \text{ contains exactly two } a \text{ s and at least two } b \text{ s}\}.

 You might consider breaking this problem into pieces:

 (a) Construct a DFA for the language \{w \mid w \text{ contains exactly two } a \text{ s}\}

 (b) Construct a DFA for the language \{w \mid w \text{ contains at least two } b \text{ s}\}

 (c) We want to construct a DFA for \(L_1 \cap L_2\), so we can use an idea like the footnote (page 46) on the proof of theorem 1.25 to construct the states and transitions for this new DFA.

1. If you are stumped or looking for guidance, many of these problems are in the selected solutions at the end of chapter 1 – see Sipser 1.5a, 1.5b, and 1.4b.

2. Despite off-by-one considerations