Note on Rice’s Theorem

The purpose of this note is to give some details of Rice’s Theorem and its proof. This theorem is a useful tool in determining undecidability.

Recall that the set of all languages, \(\mathcal{P}(\Sigma^*) \), is uncountable.

Let \(T = \{ \langle M \rangle \mid M \text{ is a Turing machine} \} \) be the set of all Turing machines. This set is countable. Let \(R = \{ L(M) \mid \langle M \rangle \in T \} \) be the set of all Turing-recognizable languages. This set is also countable. Rice’s Theorem helps identify languages which are not decidable. Specifically, it helps identify undecidable languages which are subsets of \(T \). These languages will all be sets of Turing machine descriptions.

Definition 1. A set \(P \subset T \) is a property if, whenever \(L(M_1) = L(M_2) \), we have either that

- both \(\langle M_1 \rangle, \langle M_2 \rangle \in P \), or
- both \(\langle M_1 \rangle, \langle M_2 \rangle \notin P \).

For example, the following are properties:

<table>
<thead>
<tr>
<th>property (P \subseteq T)</th>
<th>corresponding set of languages ({ L(M) \mid \langle M \rangle \in P } \subseteq R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ \langle M \rangle \mid M \text{ recognizes the language } \emptyset }</td>
<td>{ \emptyset }</td>
</tr>
<tr>
<td>{ \langle M \rangle \mid \text{ on any input, } M \text{ never halts and accepts} }</td>
<td>{ \emptyset }</td>
</tr>
<tr>
<td>{ \langle M \rangle \mid M \text{ halts on only a finite number of input strings} }</td>
<td>{ L \mid L \subseteq \Sigma^* \text{ is finite} }</td>
</tr>
<tr>
<td>{ \langle M \rangle \mid M \text{ halts and rejects the input string } \varepsilon }</td>
<td>{ L \mid L \not\ni \varepsilon }</td>
</tr>
</tbody>
</table>

Examples of sets that are not properties:

- \{ \langle M \rangle \mid M \text{ has more that 3 states} \}
- \{ \langle M \rangle \mid M \text{ accepts some string in } \leq 100 \text{ steps of computation} \}
- \{ \langle M \rangle \mid M \text{ uses } \$ \text{ in its tape alphabet} \}

So a property of a Turing machine is something that is true of the language it recognizes (and not just a trivial feature of the machine). We will want to use the term “property” interchangeably to refer to both a particular set \(P \) of Turing machines and to the set \(\{ L(M) \mid \langle M \rangle \in P \} \) of languages recognized by those machines.

Definition 2. A property \(P \) is trivial if \(P = \emptyset \) or \(P = T \).

Rice’s Theorem. If \(P \) is any nontrivial property, then \(P \) is undecidable.

Proof. For the sake of contradiction, assume that \(P \) is decidable and let \(M_P \) be the Turing machine that decides \(P \): \(M_P \) accepts \(\langle M \rangle \) if \(\langle M \rangle \in P \), and \(M_P \) rejects \(\langle M \rangle \) if \(\langle M \rangle \notin P \). We will use \(M_P \) to build a Turing machine that decides \(\text{HALT}_{TM} \).
Case 1: Suppose there is some $\langle M \rangle \in P$ such that $L(M) = \emptyset$.

Let M_{nope} be some Turing machine which does not have property P: $\langle M_{\text{nope}} \rangle \notin P$. We know that M_{nope} exists because P is not a trivial property, so there has to be some Turing machine not in P.

We design a Turing machine H to decide HALT_{TM} using M_P as a subroutine. This will be the contradiction we aim for.

$$H = \begin{cases} \text{on input } \langle M, w \rangle \text{ where } M \text{ is a Turing machine and } w \text{ is a string:} \\ (1) \text{ Build a Turing machine } J \text{ as follows:} \\ \quad J = \begin{cases} \text{on input } w: \\ \quad \text{(a) Simulate } M \text{ on } w. \\ \quad \text{(b) Then simulate } M_{\text{nope}} \text{ on } w. \text{ If it accepts, accept. If it rejects, reject.} \end{cases} \\ (2) \text{ Use } M_P \text{ to decide if } \langle J \rangle \notin P. \text{ If it accepts, reject. If it rejects, accept.} \end{cases}$$

Notice that this construction means that either $L(J) = \emptyset$ or $L(J) = L(M_{\text{nope}})$. This Turing machine H was designed with the goal that H should accept $\langle M, w \rangle$ if and only if $\langle J \rangle \notin P$. The idea is that if P is decidable, then machine H can decide the halting problem.

Claim. H accepts $\langle M, w \rangle$ if and only if M halts on w.

Proof. If M halts on w then when J runs, it will finish step (a) and get to run step (b). This means $L(J) = L(M_{\text{nope}})$, so J will not have property P (by the definition of a property). Thus on line (2), the decider M_P will reject $\langle J \rangle$, so H will accept.

If M does not halt on w, then J will loop on (a) forever, so it will never accept any string. Thus $L(J) = \emptyset$, so we know that J does have property P (by the definition of a property), so on line (2), the decider M_P will accept, so H will reject.

Observe that H is a decider, since step (1) is simply constructing a Turing machine, and step (2) is running a decider.

Thus H is a decider for HALT_{TM}. Contradiction! HALT_{TM} is undecidable! \[\Rightarrow \Leftarrow\]

Case 2: Suppose there is no $\langle M \rangle \in P$ such that $L(M) = \emptyset$.

Then a decider for P can be turned into a decider for \overline{P} as follows:

$$Q = \begin{cases} \text{on input } \langle M \rangle \text{ where } M \text{ is a Turing machine:} \\ (1) \text{ Run the decider for } P \text{ on } \langle M \rangle. \\ (2) \text{ If it accepted, reject. If it rejected, accept.} \end{cases}$$

Now we’ve reduced this case to case 1 (we have a decider for a property which contains some M such that $L(M) = \emptyset$), so switch to case 1.