
CS41 Lab 13
The lab this week focuses on network flow. The purpose of this lab is to gain practice thinking
about the Ford-Fulkerson algorithm and using FF to solve other problems using reductions.

Try to solve your algorithm design problems in lab this week by reducing to network flow.
You should use the Ford-Fulkerson algorithm as a subroutine rather than making an entirely
new algorithm of your own for problems 2, 3, and 4.

1. Maximum flow. Find the maximum flow from s to t between s and t in the network below.
Show the residual graph at intermediate steps as you build the flow.
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2. Flow variant. In the standard flow problem, we get an input G = (V,E) a directed graph
and edge capacities ce ≥ 0 limiting how much flow can pass along an edge. Consider the
following two variants of the maximum flow problem.

(a) It might be that each junction where water pipes meet is limited in how much water it
can handle (no matter how much the pipes can carry). In this case, we want to add vertex
capacities to our problem. The input is a directed G (with source s and sink t ∈ V ), edge
capacities ce ≥ 0, and vertex capacities cv ≥ 0 describing the upper limit of flow which
can pass through that vertex. Give a polynomial-time algorithm to find the maximum
s⇝ t flow in a network with both edge and vertex capacities.

(b) It might be that there are multiple sources and multiple sinks in our flow network. In
this case, the input is a directed G, a list of sources {s1, . . . , sx} ⊂ V , a list of sinks
{t1, . . . , ty} ⊂ V , and edge capacities ce ≥ 0.

Give a polynomial-time algorithm to find the maximum flow in a network with multiple
sources and multiple sinks.

3. Bipartite Matching Recall that a bipartite graph G = (V,E) is an undirected graph where
the vertices can be partitioned into X,Y ⊂ V , where X ∩ Y = ∅ and X ∪ Y = V , such that
all edges have one end in X and the other in Y , that is ∀(u, v) ∈ E, u ∈ X and v ∈ Y . A
matching M in G is a subset of the edges M ⊆ E such that each node appears in at most
one edge of M . The bipartite matching problem is to find the matching M in bipartite graph
G with maximum possible size. Give an efficient algorithm for bipartite matching.
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4. Hospitals coping with natural disaster. (K&T 7.9)

The same hospitals from earlier in the semester have now hired all the doctors they need.
There is a widespread natural disaster, and a lot of people across an entire region need to be
rushed to emergency medical care. Each person should be brought to a hospital no more than
50 miles away from their current location. Additionally, we want to make sure that no single
hospital is overloaded, so we want to spread the patients across the available hospitals. There
are n people who need medical care and h hospitals; we want to find a way to coordinate
emergency medical evacuations so that each hospital ends up with at most ⌈n/h⌉ patients in
emergency care. (Also, obviously: every patient should end up at a hospital!)

Give a polynomial-time algorithm that takes the given information about patients’ locations
and hospitals and determines whether this is possible. If it is possible, your algorithm should
also output an assignment of patients to hospitals ensuring that every patient gets to a nearby
hospital and that no hospital is overloaded.

Prove that your algorithm is correct.
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