CS41 lab 1

In typical labs this semester, you’ll be working on a number of problems in groups of 3-4 students each. You will not be handing in solutions. The primary purpose of these labs are to have a low-pressure space to discuss algorithm design, and to gain experience collaborating with others on algorithm design and analysis. However, it will be common to have some overlap between lab exercises and homework sets. There will typically be many more problems than you have time to complete during the lab. I encourage you to work on any problems your group wants, in any order.

1. Induction

Using induction, show that the following summations hold for all $n \geq 0$.

- $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$.
- $\sum_{k=0}^{n} 2^k = 2^{n+1} - 1$.
- For all positive $c \neq 1$, $\sum_{k=0}^{n} c^k = \frac{c^{n+1} - 1}{c - 1}$.

2. Logarithmic Properties

$log_2(n)$ is the unique real number x such that $2^x = n$. Using direct proof, show that the following properties hold for all positive real numbers a, b.

- $log_2(ab) = log_2(a) + log_2(b)$.
- $-log_2(a) = log_2(1/a)$.
- $log_2(a^b) = b log_2(a)$.
- $a^{log_2(b)} = b^{log_2(a)}$. (really)

3. Sorting to Half-Sorting

In the HALF-SORT problem, you’re given an array of n integers and must return an array that has the first $\lceil n/2 \rceil$ integers in sorted order. For example, if your array is $A = [5, 9, 1, 2, 6, 3]$, then a valid output of HALF-SORT(A) might be $[1, 2, 3, 9, 5, 6]$ since 1, 2, 3 are the least elements of A.

- Reduce the sorting problem to HALF-SORT. i.e., imagine you have an algorithm A for HALF-SORT, and use it to design a sorting algorithm.
- Reduce HALF-SORT to the sorting problem. i.e., imagine you have a sorting algorithm B, and use it to design an algorithm for HALF-SORT.
- Now, suppose that your friend claims to have an algorithm for HALF-SORT that runs in $10n$ time in the worst case. What is the runtime of your sorting algorithm? Is $10n$ a reasonable running time for HALF-SORT?
4. **Counterfeit Coins.** You are given n coins and a balance scale. To use this scale, you put a number of coins in a pile on the left part of the scale, and a number of coins in a pile on the right. The scale indicates which pile is heavier.

Most of the coins are identical in every aspect; however, one of the coins is counterfeit and much heavier than the rest. Design an algorithm to identify the counterfeit coin that uses the scale at most $\log_3 n$ times.