1. **Optimization vs Decision Problems.**

Recall that a decision problem requires a yes/no answer, and an optimization problem requires the “best possible answer”, which often means maximizing or minimizing over some cost or score.

For most optimization problems, there is an obvious analogue as a decision problem. For example, consider the following problem:

\[\text{VC-Opt: Given a graph } G = (V, E), \]
\[\text{return the size of the smallest vertex cover in } G. \]

The problem VC-Opt has a natural decision problem, namely **Vertex-Cover**.

\[\text{Vertex-Cover: Given a graph } G = (V, E) \text{ and an integer } k, \]
\[\text{is there a vertex cover of } G \text{ of size at most } k? \]

In fact, every optimization problem can be converted to a decision problem in this way.

(a) Show that **Vertex-Cover** \(\leq_p\) **VC-Opt**.

(b) Let \(B \) be an arbitrary optimization problem, and let \(A \) be the decision version of \(B \). Show that

\[A \leq_p B. \]

In order to show that \(A \leq_p B \), you will need to:

- Describe an algorithm for \(A \) that uses a black box for \(B \) as a subroutine.
- Argue that your algorithm only does polynomially much work, only calls the box for \(B \) polynomially many times.
- Argue that your algorithm is a correct algorithm that solves problem \(A \).

(c) Show that **VC-Opt** \(\leq_p\) **Vertex-Cover**.

2. In this problem, you will prove that **Three-Coloring** is NP-complete. You have already worked on several pieces of this problem in lab, so you should definitely use that work and not start from scratch.

Three-Coloring: Given \(G = (V, E) \), return yes iff the vertices in \(G \) can be colored, using at most three colors, such that each edge \((u, v) \in E\) is bichromatic.
(a) Prove that Three-Coloring \in NP.

(b) Given an input x for 3-Sat, create an input for Three-Coloring using the gadgets below (Figures 1 through 5). For each clause in x, you should create a piece of the graph G which will be an input for Three-Coloring.

Describe how to do this, and what the final graph G consists of. How is the satisfiability of the clause related to the colorability of the piece of the graph?

Recall from lab that our gadgets are three-colorable graphs which include at least three vertices marked a, b, c. Except for the specified property, the remaining vertices are unconstrained. For example, unless the problem states that, e.g., a cannot be red, it must be possible to color the graph in such a way that a is red. Colors for other vertices may be fixed, just not a, b, c.

Figure 1: A graph such that a, b, c all have different colors.

![Figure 1](image1.png)

Figure 2: A graph such that a, b, c all have the same color.

![Figure 2](image2.png)
Figure 3: A graph such that a, b, c do NOT all have the same color.

Figure 4: A graph such that none of a, b, c can be green.

Figure 5: A graph such that none of a, b, c are green, and they cannot all be blue.

(c) Run the THREE-COLORING algorithm on the input G you create, and output YES iff the THREE-COLORING algorithm outputs YES. Argue why this procedure gives you a
correct answer for 3-Sat. (Hint: Associate the color red with True and the color blue with False.)

3. Other coloring problems. It is natural to wonder whether there is something special about the 3 in THREE-COLORING that makes it such a hard problem.

(a) In the TWO-COLORING problem, the input is a graph $G = (V, E)$, and you should output yes iff the vertices in G can be colored using at most two colors such that each edge $\{u, v\} \in E$ is bichromatic. Prove that TWO-COLORING \in P. (Hint: look at your notes from earlier in the semester.)

(b) In the FOUR-COLORING problem, the input is a graph $G = (V, E)$, and you should output yes iff the vertices in G can be colored using at most four colors such that each edge $\{u, v\} \in E$ is bichromatic. Prove that FOUR-COLORING \in NP-COMPLETE. (Hint: for your reduction, you can pick any NP-COMPLETE problem, but some will make your life easier. Try to do a reduction from a very similar problem.)