CS41 Homework 8

This homework is due at 11:59PM on Sunday, November 12. Write your solution using IXTEX.
Submit this homework using github as a .tex file; the code should be in a file called palin-
drome.py. This is a partnered homework. You should primarily be discussing problems with
your homework partner.

It’s ok to discuss approaches at a high level with others. However, you should not reveal specific
details of a solution, nor should you show your written solution to anyone else. The only exception
to this rule is work you've done with a lab teammate while in lab. In this case, note (in your
homework feedback poll) who you've worked with and what parts were solved during lab.

1. Find the missing integer (CLRS 4-2)
Suppose n = 2% — 1 for some k.

An array A[l...n| contains all the integers from 0 to n except one. Each integer from 0 to n is
represented as a k-bit string. It would be easy to determine the missing integer in O(n) time
by using an auxiliary array B[0...n] to record which numbers appear in A. Unfortunately,
we cannot access an entire integer in A with a single operation. Because the elements of A
are represented in binary, the only operation we can use to access them is “fetch the j** bit
of Ali]”, which takes constant time. This means that reading every digit of every number in
A would take O(nk) = O(nlogn) operations.

In this problem, we’ll develop an efficient divide and conquer algorithm that identifies the
missing integer, using only O(n) operations.

(a) If one number x is missing, it must be the case that either z < n/2 or x > n/2. Describe
how to figure out which of these is true using only O(n) operations.

(b) After you figure out whether x < n/2 or x > n/2, which bit(s) of = do you know?

(c) Define the sets:
Asmallz{yEA’y<n/2}

Apig={y € Aly>n/2}

We’d like to use the insight from part (1a) to intelligently decide which elements to put
in Apiz and which to put in Agynan. This will be our preprocessing step to set up the
“divide” part of our divide and conquer algorithm. Describe a way to keep track of
which entries of A belong to either Agyan and Ayg, using only O(n) work.

(d) Put together the two parts above into an algorithm that recurses on either Agyan or Apig.

Part (1c) should help you determine your “divide” step, and part (1b) should help you
determine how to “combine” the recursive return value with new information to figure
out x.
Describe your algorithm with low-level pseudocode. That is, you should specify the data
structures that you are using, the indices of your loops, the types of your variables, how
you access data, etc., so that anyone reading your algorithm would be able to implement
it exactly according to your description.

(e) Write a recurrence for the runtime of this algorithm and solve it using partial substitu-
tion.

2. Database Queries (K&T 5.1)
You are interested in analyzing some hard-to-obtain data from two separate databases. Each
database contains n numerical values (so there are 2n values total). You'd like to determine
the median of this set of 2n values, defined as the n-th smallest value.

The only way you can access these values is through queries to the databases. In a single
query, you can specify a value k to one of the two databases, and the chosen database will
return the k-th smallest value it contains. Since queries are expensive, you would like to
compute the median using as few queries as possible.

(a) Design an algorithm that finds the median value using at most O(logn) queries. Full
pseudocode is not necessary, but you must clearly explain how it works, and you must
handle all edge cases; e.g., do not assume that n is even.

(b) Prove that your algorithm correctly returns the median.

(¢) Prove that your algorithm uses only O(logn) queries.

3. Longest Palindrome.

Let ¥ be a finite set called an alphabet.! A palindrome is a string which reads the same
backwards and forwards. Let s be a string of characters from » and let x € ¥ be some
character. The reversal of s is denoted s. Then the strings ss* (that is, s concatenated with
) R are both palindromes.

s') and scs

In the Longest Palindrome Problem, you're given a string s of n characters from ¥ and
must output the length of the longest palindrome that is a substring of s.

(a) Briefly describe a simple ©(n3) algorithm that solves the longest palindrome problem.
Why is your algorithm ©(n?3)?

(b) Design an algorithm that uses dynamic programming to solve the longest palindrome
problem in less than n3 time. (You must use dynamic programming, even if you have a
fast idea which does not use dynamic programming!)

(¢) Modify your algorithm so that it also returns the longest palindrome in x (and not just
its length).

(d) Code your dynamic programming algorithm using tabulation in the file palindrome.py.
Some example runs:

$ python3 palindrome-soln.py "racecars"

The length of the longest palindrome is 7.

The longest palindrome is: racecar

$ python3 palindrome-soln.py "quick brown racecars jump over the sleepy fox"

The length of the longest palindrome is 7.

The longest palindrome is: racecar

$ python3 palindrome-soln.py "a quick brown racecar never jumps over the sleepy fox"
The length of the longest palindrome is 11.

The longest palindrome is: n racecar n

python3 palindrome-soln.py "abcdeedba"

'For example, ¥ might be {0,1} or {a,b,c,...,z}.

The length of the longest palindrome is 4.

The longest palindrome is: deed

$ python3 palindrome-soln.py "CS35: data structures and algorithms"
The length of the longest palindrome is 3.

The longest palindrome is: ata

$ python3 palindrome-soln.py "a man a plan a canal Panama"
The length of the longest palindrome is 3.

The longest palindrome is: ama

$ python3 palindrome-soln.py "amanaplanacanalpanama"

The length of the longest palindrome is 21.

The longest palindrome is: amanaplanacanalpanama

Note that you do not need to remove whitespace or fix the cases of letters.

You should feel free to run your own tests, and you should make sure that you have
debugged your code (and your dynamic programming algorithm!). Your code should be
a straightforward tabulation implementation of your dynamic programming plan.

4. (extra challenge) Cassie’s Convenience Stores (v2.0) It is natural to assume the profit
of a convenience store changes depending on how close to other convenience stores it is.
Suppose instead of an array of profits P[1---n] and a minimum distance between stores K,
Cassie does more market research and gets information on P[k, d], the annual profit of location
k assuming that the closest other store is at least d km away.

Design an algorithm that computes Cassie’s maximum profit.

