Max-cut approximation coblem: max-cut put: graph G = (V, E) and nonnegative edge weights w_e for each $e \in E$ $W(A, B) = \sum_{e=\{u,v\}\in E} w_e$ $u \in A$ Max-Cut - approx (G= (V,E), Zwe Jece) SAWITY CHECKS A= B= {} halts? yes for VEV: runtime? O(n) flip a coin valid output? yes if heads, add v to A if toxilo, add v to B return (A,B) Chaim: This alg returns a cut with expected approx ratio 2. Proof: (direct) het (A13) be the cut returned by this alg. Lot (A*, B*) be the max cut. $W(A^*, B^*) = 2$, $We \leq 2$, We = 4 the most edges $e e e doge = e \in E$ All of the edges $A^*, B^* cut$ Let $X_{uv} = \begin{cases} 1, & \text{if edge } \{u, v\} \in \mathbb{C} \text{ crosses the } (A, B) \text{ ext} \\ \mathcal{I} & \begin{cases} 0, & \text{otherwise} \end{cases}$ Two is an nondom variable. $X = \{0, 1\}$ KEY setup ${\cal M}$ the distribution of $Xuv^{\rm :}$ for making the analysis come together $P_R[X_{uv} = 0]$ Probability 11 14 14 14 14 PR[edge ?u,u? doesn't cross A, B cud]= 1/2 possibilities ueA, veA VEB, VEB 14 PR [edge 3 U, v3 erosses A, B col] = 1/2 UEA, VEB UEB, VEA PR[Xuv=1] $\mathbb{E}[X_{av}] = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2} \quad (*)$ $\mathbb{E}\left[\omega(A,B)\right] = \mathbb{E}\left[\sum_{e \text{ across}}^{1} w_{e}\right] \text{ by def of weight of a cut}$ $= \mathbb{E}\left[\sum_{e \text{ acisis}}^{5} w_{e} \cdot 1\right]$ moth = $E\left[\begin{array}{c} 1\\ e across\\ A B e \\ \end{array}\right]$ We · Xe be cause Xe = 1 fiv all edges e across AB ent

Brainstorm for next class.

Max 3 SAT:

n Page 2

input: n variables X.,...,Xn m clauses of 5130 3 output: a truth assignment which maximizes # of satisfied clauses