
CS41 Lab 9
November 2, 2021

The learning goals of lab this week are (i) to continue to practice building DP algorithm design
skills, and (ii) to start thinking about flow problems and applications of network flow. I encourage
you to work on the first problem and then whichever problem looks interesting.

1. Pretty-printing (based on KT 6.6). Suppose we have a paragraph of text, and we want to
print it neatly on a page. The paragraph consists of a list of words w1, w2, . . . , wn; each
word wi has length `i. The maximum line length is M . (Assume that `i ≤ M for all i.) We
assume we have a fixed-width font and ignore issues of punctuation and hyphenation.

Consider a line containing words wi, wi+1, . . . , wj , and using only one space between words.
Because the words must fit within the maximum line length, we know that:

length of this line = (`i + 1) + (`i+1 + 1) + · · ·+ (`j−1 + 1) + `j ≤M

The “slack” space on a line is the number of spaces remaining at the right margin, so for this
line it is the value:

slack of this line = M −
(

(`i + 1) + (`i+1 + 1) + · · ·+ (`j−1 + 1) + `j

)
The penalty is the sum over all the lines (including the last) of the squares of the slack of all
lines in the paragraph.

Describe and analyze a dynamic programming algorithm to find the best way to print a
paragraph, where “best” means “with smallest penalty”. Include a recursive definition of the
optimal value that motivates your algorithm.

For example, consider the following text.1

With maximum line length 75, the output should look like:

Not far from here, by a white sun, behind a green star, lived the

Steelypips, illustrious, industrious, and they hadn’t a care: no spats

in their vats, no rules, no schools, no gloom, no evil influence of the

moon, no trouble from matter or antimatter-for they had a machine, a

dream of a machine, with springs and gears and perfect in every respect.

Penalty: 199

With maximum line length 25, the output should look like:

Not far from here, by

a white sun, behind a

green star, lived the

Steelypips, illustrious,

industrious, and they

1This is a line from Stanislaw Lem’sThe Cyberiad.

1



hadn’t a care: no spats

in their vats, no rules,

no schools, no gloom,

no evil influence of the

moon, no trouble from

matter or antimatter-for

they had a machine, a

dream of a machine, with

springs and gears and

perfect in every respect.

Penalty: 137

2. Subset Sum. In this problem, you are given an integer weight threshold W > 0 and a list of
n items {1, . . . , n} each with nonnegative weight wi. Your task is to output a subset of items
S ⊆ {1, . . . , n} such that

∑
i∈S wi is as large as possible, subject to

∑
i∈S wi ≤W .

Design an analyze a dynamic program to solve Subset Sum. Your algorithm should run in
O(nW ) time.

3. Flow variant. In the standard flow problem, we get an input G = (V,E) a directed graph
and edge capacities ce ≥ 0 limiting how much flow can pass along an edge. Consider the
following two variants of the maximum flow problem.

(a) It might be that each junction where water pipes meet is limited in how much water it
can handle (no matter how much the pipes can carry). In this case, we want to add vertex
capacities to our problem. The input is a directed G (with source s and sink t ∈ V ), edge
capacities ce ≥ 0, and vertex capacities cv ≥ 0 describing the upper limit of flow which
can pass through that vertex. Give a polynomial-time algorithm to find the maximum
s t flow in a network with both edge and vertex capacities.

(b) It might be that there are multiple sources and multiple sinks in our flow network. In
this case, the input is a directed G, a list of sources {s1, . . . , sx} ⊂ V , a list of sinks
{t1, . . . , ty} ⊂ V , and edge capacities ce ≥ 0.

Give a polynomial-time algorithm to find the maximum flow in a network with multiple
sources and multiple sinks.

4. Advertising contracts (K& T 7.16)

Back in the euphoric early days of the Web, people liked to claim that much of the enormous
potential in a company like Yahoo! was in the “eyeballs”—the simple fact that millions of
people look at its pages every day. Further, by convincing people to register personal data
with the site, a site like Yahoo! can show each user an extremely targeted advertisement
whenever the user visits the site, in a way that TV networks or magazines couldn’t hope
to match. So if a user has told Yahoo! that she is a 21-year-old computer science major at
Swarthmore, the site can present a banner ad for apartments in Philadelphia suburbs; on
the other hand, if she is a 50-year-old investment banker from Greenwich, CT, the site can
display a banner ad pitching luxury cars instead.

2



But deciding on which ads to show to which people involves some serious computation behind
the scenes. Suppose that the managers of a popular site have identified k distinct demographic
groups G1, G2, . . . , Gk. (Some may overlap.) The site has contracts with m different advertis-
ers to show a certain number of copies of their ads to users of the site. Here’s what a contract
with the ith advertiser looks like:

� For a subset Xi ⊆ {G1, . . . , Gk} of the demographic groups, advertiser i wants ads shown
only to users who belong to at least one of the groups listed in Xi.

� For a number ri, advertiser i want its ads shown to at least ri users each minute.

Consider the problem of designing a good advertising policy — a way to show a single ad to
each user of the site. (Imagine a world where each user saw only one ad per site.) Suppose at
a given minute, there are n users visiting the site. Because we have registration about each
of the users, we know that user j belongs to a subset Uj of the demographic groups.

The problem is: is there a way to show a single ad to each user so that the site’s contracts
with each of the m advertisers is satisfied for this minute?

Give an efficient algorithm to decide if this is possible, and if so, to actually choose an ad to
show each user.

3


