CS41 Lab 3

September 14, 2021

In typical labs this semester, you’ll be working on a number of problems in groups of 3-4 students.
You will not be handing in solutions; the primary purpose of these labs is to have a low-pressure
space to discuss algorithm design. However, it will be common to have some overlap between lab
exercises and homework sets.

The goal of this lab session is to gain more experience with asymptotic analysis. Do not expect to
complete all parts of all problems by the end of the lab. Consider it a successful lab session if you
can complete the first two problems and make reasonable progress on either the third or fourth
problem. The fifth problem is icing on the cake, and very open-ended, so you should consider it
last.

For these problems, your example functions should have domain and range the positive integers N.

Keep it simple.

1. Rates of Growth. Arrange the following functions in ascending order of growth rate. That
is, if g follows f in your list, then it should be the case that f is O(g).

e fi(n) =n?° e fi(n)=10" e fz(n) =n"
o fa(n)=V2n e f5(n) = 100" o fs(n) =n*logy(n)
o f3(n)=n+10 o fo(n) =log; 1 (n)¥/n o fo(n) = nloet

No proofs are necessary; just arrange the functions in ascending order of growth.
2. Big-O facts. Assume you have functions f, g, and h from N to RZ°. Prove the following:

(a) If fis O(h) and g is O(h), then the function f + g is O(h).
(b) If fis O(g) and g is O(h), then f is O(h).
3. Asymptotic analysis. Assume you have functions f and g such that f(n) is O(g(n)). For

each of the following statements, decide whether you think it is true or false and give a proof
or counterexample.

(a) logy(f(n)) is O(logy(g(n))).
(b) 27 is O(29(™)).

(c) (f(n))?is O((g9(n))?).

4. Asymptotic Proofs. Let f(n) = 2(log(n))? + 6 and g(n) = 5n'/* + 10. Prove that f(n) =
O(g(n)). You may use techniques and facts from class and the textbook. Your proof should
be complete and formal.

5. The Wedding Planner Problem. Imagine you are a wedding planner. Among other tasks,
you must help your customers with their guest lists. Couples come to you with lists of people
they might invite to their wedding. They also come with demands — Alice and Bob need to
be invited, but if Bob is invited, do not invite Carol (they have history). When Carol, Dave,



and Eve get together, they only talk about Beyoncé (their favorite musician), so don’t invite
all three. However, any two of them is ok. Call these conditions constraints.

People at weddings are demanding. Everything needs to be exactly perfect, and they will
blame you if even one constraint is not satisfied. You’re not even sure if this is possible, and
it when it’s not, it would be nice to have a convincing argument for the wedding couple.

Design an algorithm that takes a list of people, and a list of constraints, and outputs YES if
there is an invite list that satisfies every constraint. Otherwise, output NO.



