This week, we’ll continue exploring the use of randomization and approximation to solve problems.

1. **Finding the Median.** Given a set \(S = \{a_1, \ldots, a_n\} \) of numbers, the median of \(S \), denoted \(\text{med}(S) \), is the \(k \)-th smallest element of \(S \), where \(k = \lfloor \frac{n+1}{2} \rfloor \). In this problem, you will analyze a randomized algorithm to output the median. Consider the following algorithm for finding the median:

\[
\text{FindMedian}(S)
1 \quad \text{Return Select}(S, \lfloor \frac{n+1}{2} \rfloor)
\]

\[
\text{Select}(S, k)
1 \quad \text{Choose pivot } a_i \in S \text{ at random, uniformly}\,
2 \quad \text{Initialize } S^-, S^+ := \{
3 \quad \text{for each } j \neq i
4 \quad \text{if } a_j < a_i \text{ add } a_j \text{ to } S^-
5 \quad \text{if } a_j > a_i \text{ add } a_j \text{ to } S^+
6 \quad \text{if } |S^-| = k - 1 \text{ return } a_i
7 \quad \text{else if } |S^-| > k - 1
8 \quad \quad \text{return Select}(S^-, k)
9 \quad \text{else}
10 \quad \quad \text{return Select}(S^+, k - (1 + |S^-|))
\]

An element is chosen *uniformly* if each element is equally likely to be picked.

- First, show that \(\text{FindMedian} \) always returns the median.
- Next, analyze the \(\text{FindMedian} \) running time when the pivot element is chosen uniformly from \(S \). The following structure will help guide you.

Say that the algorithm is in **phase** \(j \) if there are between \(n(3/4)^j \) and \(n(3/4)^{j+1} \) elements in the set \(S \) being considered. So, for example, we are in phase 0 the first time \(\text{Select} \) is called (because \(n(3/4)^0 + 1 \leq |S| \leq n(3/4)^0 \)).

Call an element \(a_i \in S \) **central** to \(S \) if (i) at least \(|S|/4 \) of the elements of \(S \) are less than \(a_i \) and (ii) at least \(|S|/4 \) elements of \(S \) are greater than \(a_i \).

(a) Show that there are \(|S|/2 \) central elements.
(b) Show that if the pivot element is central, the phase ends i.e., the next recursive call that gets made will be in a different phase.
(c) Give an upper bound on the expected number of recursive calls to \(\text{Select} \) before a round ends.
(d) Give an upper bound on the running time of each \(\text{Select} \) call, not including recursive calls.
(e) Give an upper bound on the number of phases that are run before \(\text{FindMedian} \) terminates.
(f) Give an upper bound on the expected runtime of \textsc{FindMedian} when the pivot is chosen uniformly.

2. **Chromatic Number.** Consider the optimization problem \textsc{ChromaticNumber}, defined as follows. Given a graph \(G = (V, E) \) as input, determine the smallest number \(k \) such that it is possible to \(k \)-color the graph.

(a) Prove that \textsc{ChromaticNumber} is NP-hard.
(b) Prove that there is no efficient \(\frac{4}{3} \)-approximation to \textsc{ChromaticNumber} unless \(P = \text{NP} \).