CS41 Lab 12: NP-Completeness and approximation

November 23, 2021
This week, we'll continue exploring NP-COMPLETE decision problems, and develop approximation algorithms for related versions of those problems. You should focus on the first two problems.

1. Travelling Salesman Problem. In this problem, a salesman travels the country making sales pitches. The salesman must visit n cities and then return to her home city, all while doing so as cheaply as possible.
The input is a complete graph $G=(V, E)$ along with nonnegative edge costs $\left\{c_{e}: e \in E\right\}$. A tour is a simple cycle $\left(v_{j_{1}}, \ldots, v_{j_{n}}, v_{j_{1}}\right)$ that visits every vertex exactly once. ${ }^{1}$ The goal is to output the minimum-cost tour.
For many TSP applications (such as when the cost is proportional to the distance between two cities), it makes sense for the edges to obey the triangle inequality: for every i, j, k, we have

$$
c_{(i k)} \leq c_{(i j)}+c_{(j k)} .
$$

This version is often called Metric-TSP.
The (decision version of the) Travelling Salesman Problem is NP-Complete. For this problem, you will develop a 2-approximation algorithm for Metric-TSP.
(a) First, to gain some intuition, consider the following graph:

(b) On your own try to identify a cheap tour of the graph.
(c) Build some more intuition by computing the minimum spanning tree (MST) of the graph. Let T be your minimum spanning tree.
(d) Let OPT be the cheapest tour. Show that its cost is bounded below by the cost of the $\operatorname{MST}: \operatorname{cost}(T) \leq \operatorname{cost}(O P T)$.

[^0](e) Give an algorithm which returns a tour A which costs at most twice the cost of the $\operatorname{MST}: \operatorname{cost}(A) \leq 2 \operatorname{cost}(T)$.
(f) Conclude that your algorithm is a 2 -approximation for METRIC-TSP.
2. Show that the following problems are \in NP:
(a) Traveling-Salesman-Decision. Given a complete graph $G=(V, E)$, nonnegative edge costs on all edges $\left\{c_{e}: e \in E\right\}$, and a target distance t, output YES iff it is possible for a travelling salesman to visit all the cities and return back home in a simple tour with total cost $\leq t$.
(b) Subset-Sum. Given a list of n items with weights w_{1}, \ldots, w_{n}, along with a weight threshold W, output yes iff there exists a subset $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.
(c) Set-Cover. The input is a set \mathcal{U} of n elements, an integer k, and a collection $S_{1}, \ldots, S_{m} \subseteq$ \mathcal{U} of m subsets of \mathcal{U}. We want to output YES iff there is a set $T \subseteq\{1, \ldots, m\}$ with $|T| \leq k$ such that
$$
\bigcup_{i \in T} S_{i}=\mathcal{U}
$$
(We think of the sets that T is picking as a "cover" of the universe of elements \mathcal{U}.)

3. The hardness of Three-Coloring-OPT

Recall the Three-Coloring problem: Given a graph $G=(V, E)$, output yes iff the vertices in G can be colored using only three colors such that the endpoints of any edge have different colors. We know that Three-Coloring is NP-Complete. But what about the optimization version of Three-Coloring?

Let Three-Coloring-OPT be the following problem. Given a graph $G=(V, E)$ as input, color the vertices in G using at most three colors in a way that maximizes the number of satisfied edges, where an edge $e=(u, v)$ is satisfied if u and v have different colors.
Show that if there is a polynomial-time algorithm for Three-Coloring-OPT then $\mathrm{P}=\mathrm{NP}$.

[^0]: ${ }^{1}$ except for the start vertex, which we visit again to complete the cycle

