
CS41 Lab 11: Polynomial-Time Verifiers and
Polynomial-Time Reductions

November 16, 2020

This week, we’ve started to understand what makes some problems seemingly hard to compute. In
this lab, we’ll consider the problem of verifying that an algorithm’s answer is correct. Recall that
a decision problem is a problem that requires a yes or no answer. Alternatively, we can describe
decision problem as a set L Ď t0, 1u˚; think of L as the set of all yes inputs i.e., the set of inputs
x such that one should output yes on input x. Let |x| denote the length of x, in bits.

Polynomial-time Verifiers. Call V an efficient verifier for a decision problem L if

1. V is a polynomial-time algorithm that takes two inputs x and w.

2. There is a polynomial function p such that for all strings x, x P L if and only if there exists
w such that |w| ď pp|x|q and V px,wq “ yes.

The string w is usually called the witness or certificate. Think of w as some proof that x P L. For
V to be a polynomial-time verifier, w must have size some polynomial of the input x. For example,
if x represents a graph with n vertices and m edges, the length of w could be n2 or m3 or pn`mq100

but not 2n.

Consider this lab a success if you complete problem 2 and make progress on problems 3,4.

1. Verifier Debugging. Consider the Three-Coloring problem: Given G “ pV,Eq return
yes iff the vertices in G can be colored using at most three colors such that each edge pu, vq P E
is bichromatic.

Consider the following verifier for Three-Coloring. The witness we request is a valid three
coloring of the undirected graph G “ pV,Eq, which is specified as a list of two-digit binary
strings w “ w1w2 . . . wk where we interpret

wi “

$

&

%

00, vertex i is colored blue
01, vertex i is colored green
10, vertex i is colored red

threeColoringVerifier(G “ pV,Eq, w)

1 for each wi in w
2 if wi “ 11
3 return no
4 for j from i` 1 to |w|
5 if wi “ wj and pi, jq P E
6 return no
7 return yes

This verifier is not quite right.

Give an example witness w and graph G which is not three-colorable, such that

threeColoringVerifierpG,wq “ yes

1

2. Rewrite threeColoringVerifier so that it is a valid verifier for Three-Coloring. Prove
that it is correct.

3. Show SatďP 3-Sat.

4. You will eventually show that Three-Coloring is NP-Complete. Before getting there,
it will be helpful to create some interesting three-colorable graphs. In all of the following
exercises, you are to create a three-colorable graph (say the colors are red, blue, green) with
certain special properties. The graphs you create should include three vertices marked a, b, c
but can (and often will) include other vertices. Except for the properties specified, these
vertices should be unconstrained. For example, unless the problem states that e.g. a cannot
be red, it must be possible to color the graph in such a way that a is red. (You may fix colors
for other vertices, just not a, b, c, and not in a way that constrains the colors of a, b, c.)

(a) Create a graph such that a, b, c all have different colors.

(b) Create a graph such that a, b, c all have the same color.

(c) Create a graph such that a, b, c do NOT all have the same color.

(d) Create a graph such that none of a, b, c can be green.

(e) Create a graph such that none of a, b, c are green, and they cannot all be blue.

2

