
CS41 Lab 10
November 9, 2021

The lab this week focuses on network flow and reductions. The purpose of this lab is to gain practice
thinking about using the Ford-Fulkerson algorithm to solve other problems using reductions.

You should solve your algorithm design problems in lab this week by reducing to network
flow. You should use the Ford-Fulkerson algorithm as a subroutine rather than making an
entirely new algorithm of your own. You should not modify the Ford-Fulkerson algorithm; use it
as a black box.

1. Flow variant. In the standard flow problem, we get an input G = (V,E) a directed graph
and edge capacities ce ≥ 0 limiting how much flow can pass along an edge. Consider the
following two variants of the maximum flow problem.

(a) It might be that each junction where water pipes meet is limited in how much water
it can handle (no matter how much the pipes can carry). In this case, we want to add
vertex capacities to our problem. The input is a directed G (with source s and sink
t ∈ V ), edge capacities ce ≥ 0, and vertex capacities cv ≥ 0 describing the upper limit of
flow which can pass through that vertex. Give a polynomial-time algorithm to find the
maximum s t flow in a network with both edge and vertex capacities. Your algorithm
should be a reduction to the Ford-Fulkerson algorithm.

(b) It might be that there are multiple sources and multiple sinks in our flow network. In
this case, the input is a directed G, a list of sources {s1, . . . , sx} ⊂ V , a list of sinks
{t1, . . . , ty} ⊂ V , and edge capacities ce ≥ 0.

Give a polynomial-time algorithm to find the maximum flow in a network with multiple
sources and multiple sinks. Your algorithm should be a reduction to the Ford-Fulkerson
algorithm.

2. Advertising contracts (K& T 7.16)

Back in the euphoric early days of the Web, people liked to claim that much of the enormous
potential in a company like Yahoo! was in the “eyeballs”—the simple fact that millions of
people look at its pages every day. Further, by convincing people to register personal data
with the site, a site like Yahoo! can show each user an extremely targeted advertisement
whenever the user visits the site, in a way that TV networks or magazines couldn’t hope
to match. So if a user has told Yahoo! that she is a 21-year-old computer science major at
Swarthmore, the site can present a banner ad for apartments in Philadelphia suburbs; on
the other hand, if she is a 50-year-old investment banker from Greenwich, CT, the site can
display a banner ad pitching luxury cars instead.

But deciding on which ads to show to which people involves some serious computation behind
the scenes. Suppose that the managers of a popular site have identified k distinct demographic
groups G1, G2, . . . , Gk. (Some may overlap.) The site has contracts with m different advertis-
ers to show a certain number of copies of their ads to users of the site. Here’s what a contract
with the ith advertiser looks like:

� For a subset Xi ⊆ {G1, . . . , Gk} of the demographic groups, advertiser i wants ads shown
only to users who belong to at least one of the groups listed in Xi.

1



� For a number ri, advertiser i want its ads shown to at least ri users each minute.

Consider the problem of designing a good advertising policy — a way to show a single ad to
each user of the site. (Imagine a world where each user saw only one ad per site.) Suppose at
a given minute, there are n users visiting the site. Because we have registration about each
of the users, we know that user j belongs to a subset Uj of the demographic groups.

The problem is: is there a way to show a single ad to each user so that the site’s contracts
with each of the m advertisers is satisfied for this minute?

Give an efficient algorithm to decide if this is possible, and if so, to actually choose an ad to
show each user.

3. Optimization vs Decision Problems. Recall that a decision problem requires a yes/no
answer, and an optimization problem requires the “best possible answer”, which often means
maximizing or minimizing over some cost or score.

For most optimization problems, there is an obvious analogue as a decision problem. For
example, consider the following problem:

Vertex-Cover-Opt: Given a graph G = (V,E), return the size of the smallest vertex
cover in G.

Vertex-Cover-Opt has a natural decision problem, namely Vertex-Cover. In fact, every
optimization problem can be converted to a decision problem in this way.

(a) Show that Vertex-Cover≤PVertex-Cover-Opt.

(b) Let B be an arbitrary optimization problem, and let A be the decision version of B.
Show that

A≤PB .

(c) Show that Vertex-Cover-Opt≤PVertex-Cover.

2


