
CS41 Homework 9
This homework is due at 11:59PM on Monday, November 8. Write your solution using LATEX.

Submit this homework using github as .tex file; the code should be in a file called pretty-
print.py. This is a partnered homework. You should primarily be discussing problems with
your homework partner.

It’s ok to discuss approaches at a high level with others. However, you should not reveal specific
details of a solution, nor should you show your written solution to anyone else. The only exception
to this rule is work you’ve done with a lab teammate while in lab. In this case, note (in your
homework submission poll) who you’ve worked with and what parts were solved during lab.

1. Pretty-printing (based on KT 6.6) Suppose we have a paragraph of text, and we want to
print it neatly on a page. The paragraph consists of a list of words w1, w2, . . . , wn; each
word wi has length `i. The maximum line length is M . (Assume that `i ≤ M for all i.) We
assume we have a fixed-width font and ignore issues of punctuation and hyphenation.

Consider a line containing words wi, wi+1, . . . , wj , and using only one space between words.
Because the words must fit within the maximum line length, we know that:

length of this line = (`i + 1) + (`i+1 + 1) + · · ·+ (`j−1 + 1) + `j ≤M

The “slack” space on a line is the number of spaces remaining at the right margin, so for this
line it is the value:

slack of this line = M −
(

(`i + 1) + (`i+1 + 1) + · · ·+ (`j−1 + 1) + `j

)
The penalty is the sum over all the lines (including the last) of the squares of the slack of all
lines in the paragraph.

(a) Describe and analyze a dynamic programming algorithm to find the best way to print a
paragraph, where “best” means “with smallest penalty”. Include a recursive definition
of the optimal value that motivates your algorithm.

(b) Implement your algorithm in the file pretty-print.py; it should print an optimal divi-
sion of words into lines. The input should be a number (M , the maximum line length)
and a file containing some words; you should assume that a “word” is any contiguous se-
quence of characters not including whitespace. The program should print the paragraph,
split into lines appropriately, followed by the numerical value of the penalty.

Note: You should feel free to create your own input files and test your program on a
variety of different inputs. Some example inputs and outputs (for comparison/testing)
can be found in /home/fontes/public/cs41/text-wrapping. Your program should be
able to handle quite large inputs — e.g. one example is the full text of Herman Mellville’s
Moby Dick, with M = 40 (note that this might take a few minutes to run, but should
not crash).

1



For example, consider the input in demoText.1

With maximum line length 25, we can call the program by running
> python pretty-print.py 25 demoText

and get the output:

Not far from here, by

a white sun, behind a

green star, lived the

Steelypips, illustrious,

industrious, and they

hadn’t a care: no spats

in their vats, no rules,

no schools, no gloom,

no evil influence of the

moon, no trouble from

matter or antimatter-for

they had a machine, a

dream of a machine, with

springs and gears and

perfect in every respect.

Penalty: 137

With maximum line length 75, the output should look like:

Not far from here, by a white sun, behind a green star, lived the

Steelypips, illustrious, industrious, and they hadn’t a care: no spats

in their vats, no rules, no schools, no gloom, no evil influence of the

moon, no trouble from matter or antimatter-for they had a machine, a

dream of a machine, with springs and gears and perfect in every respect.

Penalty: 199

1This is a line from Stanislaw Lem’s The Cyberiad.

2



2. Maximum flow. Find the maximum flow from s to t and the minimum cut between s and
t in the network below. Show the residual network at intermediate steps as you build the
flow. (You can include your intermediate residual flow as figures/images, or you can explicitly
write out all of the residual graph (all edges and all capacities) at each step.)

s

a4

c

5

b
3 e

1

d

2

t

4 2
1

3

3

3. Changing edge capacities. Consider the following claim:

Claim 1. Let G be an arbitrary flow network, with a source s, sink t, and a positive integer
capacity ce on every edge e. Let (A,B) be a minimum s − t cut with respect to these edge
capacities {ce : e ∈ E}. Now, suppose we add 1 to every edge capacity. Then, (A,B) is still
a minimum s− t cut with respect to these new capacities {1 + ce : e ∈ E}.

Answer whether you think the claim is True or False. If you answer True, give a short
explanation why it is true. If you answer False, give a counterexample showing the claim is
false.

4. (extra challenge) Flow variants. In the standard flow problem, we get an input G = (V,E)
a directed graph and edge capacities ce ≥ 0 limiting how much flow can pass along an edge.
Consider the following two variants of the maximum flow problem.

(a) It might be that each junction where water pipes meet is limited in how much water
it can handle (no matter how much the pipes can carry). In this case, we want to add
vertex capacities to our problem. The input is a directed G (with source s and sink
t ∈ V ), edge capacities ce ≥ 0, and vertex capacities cv ≥ 0 describing the upper limit of
flow which can pass through that vertex. Give a polynomial-time algorithm to find the
maximum s t flow in a network with both edge and vertex capacities. (Hint: reduce
this problem to the standard network flow problem, then use Ford-Fulkerson to solve it.)

3



(b) It might be that there are multiple sources and multiple sinks in our flow network. In
this case, the input is a directed G, a list of sources {s1, . . . , sx} ⊂ V , a list of sinks
{t1, . . . , ty} ⊂ V , and edge capacities ce ≥ 0.

Give a polynomial-time algorithm to find the maximum flow in a network with multiple
sources and multiple sinks. (Hint: reduce this problem to the standard network flow
problem, then use Ford-Fulkerson to solve it.)

4


