CS41 Homework 5

This homework is due at 11:59PM on Monday, October 4. Write your solution using $\mathrm{A}_{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$. Submit this homework using github as a .tex file. This is a partnered homework. You should primarily be discussing problems with your homework partner.

It's ok to discuss approaches at a high level with others. However, you should not reveal specific details of a solution, nor should you show your written solution to anyone else. The only exception to this rule is work you've done with a lab teammate while in lab. In this case, note (in your homework submission poll) who you've worked with and what parts were solved during lab.

The focus of this homework is graphs (since that is what we've been studying) and algorithms (ditto), but also to practice reductions. In computer science, a reduction is a way of solving one problem using another. Imagine having an algorithm for problem B, and use the algorithm for B as a subroutine in an algorithm that solves problem A. We say that "problem A reduces to problem B " or that we have a reduction from problem A to problem B. Reductions are a very deep algorithmic technique that can be used to make connections between problems that might initially look very different. In this homework, all of your solutions must be reductions, that is, they must consist of:

- processing the input data in some way
- calling an algorithm we studied in class
- (optionally) processing the output from that algorithm to produce an answer to the original problem

The idea of a reduction is that you do not modify the subroutine. This has the benefit of making your runtime analysis for that part of your algorithm easy (we already analyzed it), and helping your argument for correctness (since we already proved the subroutine algorithm worked / had some property). The challenge will be figuring out which subroutine to use, and how to preprocess the input to make it correctly formatted and meaningful before calling the subroutine.

1. Butterfly Classification. (K \& T 3.4) Some of your friends are lepidopterists - they study butterflies. Part of their recent work involves collecting butterfly specimens and identifying what species they belong to. Unfortunately, determining distinct species can be difficult because many species look very similar to one another.

During their last field expedition, your friends collected n butterfly specimens and believe the specimens come from one of two butterfly species (call them species A and B.) They'd like to divide the n specimens into two groups - those that belong to A and those that belong to B. However, it is very hard for them to directly label any one specimen. Instead, they adopt the following approach:
For each pair of specimens i and j, they study them carefully side by side. If they're confident enough in their judgement, they will label the pair as same (meaning they are confident that both specimens belong to the same species) of different (meaning they believe that the specimens belong to different species). If they are not confident, they do not label the specimens. Call this labeling (either (i, j) are the same or (i, j) are different) a judgement.

A set of judgements is consistent if it is possible to label each specimen either A or B in such a away that for each pair (i, j) labeled "same", it is the case that i and j have the same label, and for each pair (i, j) labeled "different", it is the case that i and j have different labels.

Design and analyze an algorithm which takes n butterfly specimens and m judgements, and outputs whether or not the judgements are consistent. Your algorithm should run in $O(n+m)$ time.
2. Ethnographers. (K \& T 3.12) You're helping a group of ethnographers analyze some oral history data they've collected by interviewing members of a village to learn about the lives of people who have lived there over the past two hundred years.
From these interviews, they've learned about a set of n people (all now deceased), whom we'll denote $P_{1}, P_{2}, \ldots, P_{n}$. They've also collected facts about when these people lived relative to one another. Each fact has one of the following two forms:

- for some i and j, person P_{i} died before person P_{j} was born; or
- for some i and j, the lifespans of P_{i} and P_{j} overlapped at least partially.

Naturally, the ethnographers are not sure that all these facts are correct; memories are not very good, and a lot of this was passed down by word of mouth. So what they'd like you to determine is whether the data they've collected is at least internally consistent, in the sense that there could have existed a set of people for which all the facts they've learned simultaneously hold.
Give an efficient algorithm to do this: either it should propose dates of birth and death for each of the n people so that all the facts hold true, or it should report (correctly) that no such dates can exist - that is, the facts collected by the ethnographers are not internally consistent.
3. Enemies on the Move. Alice and Bob are very active students at University of Pennsylvania. They used to be best friends but now despise each other. Alice and Bob can't stand to be in the same room, or even nearby. However, they each take many classes and are active in several clubs. Is it even possible to avoid each other?

This can be modeled as a graph problem. The input consists of:

- a directed graph $G=(V, E)$,
- an integer $k \leq n$,
- start vertices s_{A} and $s_{B} \in V$, and
- end vertices t_{A} and $t_{B} \in V$.

In this problem, Alice starts at s_{A} and wants to travel to t_{A}, while Bob starts at s_{B} and wants to travel to t_{B}. At each time step, either Alice or Bob moves along a single edge. (You can assume they move separately.) At all times, Alice and Bob must be at least k edges apart.
Design and analyze a polynomial-time algorithm that determines whether Alice and Bob can get where they want to go while maintaining distance.
4. (extra challenge) ${ }^{1} \mathrm{~A}$ graph is k-colorable if it's possible to color each vertex using one of k colors such that the endpoints of each edge have different colors. Design and analyze an $O(n+m)$ time algorithm that colors a graph using $\Delta+1$ colors, where Δ is the largest degree of a vertex.

[^0]
[^0]: ${ }^{1}$ If you work on this problem, you are not required to solve it as a reduction. Feel free to come up with any algorithm you can invent!

