
CS41 Homework 4

This homework is due at 11:59PM on Monday, September 27. Write your solution using LATEX.
Submit this homework using github as a .tex file. This is a partnered homework. You should
primarily be discussing problems with your homework partner.

It’s ok to discuss approaches at a high level with others. However, you should not reveal
specific details of a solution, nor should you show your written solution to anyone else. The only
exception to this rule is work you’ve done with a lab partner while in lab. In this case, note (in
your homework submission poll) who you’ve worked with and what parts were solved during
lab.

1. Rumor spreading. The students who were taking college tours previously are now all at
their colleges, and often chat and congregate online. After being admitted to their assigned
(distinct) colleges, the same group of n students all go online to compare their experiences.
One of them, s1, wants to start a rumor that their college has ice cream at every meal, an
on-campus rollercoaster, artisanal coffee, and no homework or exams, and is thus the best
college, but s1 wants to make sure that every other student will hear the rumor. Students
always repeat rumors to their friends, but not all students are friends with all other students.

If it takes one minute to repeat the rumor (copy-paste, plus time to pick an emoji and add
a comment before forwarding), design and analyze an algorithm which student s1 can use to
figure out whether every other student s2, s3, . . . , sn will hear the rumor (and if they do,
then the algorithm should report how long it will take until everyone has heard the rumor).

2. Network robustness. (K&T 3.9) There’s a natural intuition that two nodes are far apart in
a communication network—separated by many hops—have a more tenuous connection than
two nodes that are closer together. There are a number of algorithmic results that are based
to some extent on different ways of making this notion precise. Here’s one that involves the
susceptibility of paths to the deletion of nodes.

Suppose that an n-node undirected graph G = (V,E) contains two nodes s and t such that
the distance between s and t is strictly greater than n/2. (The distance between two nodes
is the number of edges along the shortest path between them.) Show that there must exist
some node v, not equal to either s or t, such that deleting v from G destroys all s− t paths.
Give an algorithm with running time O(m + n) to find such a node v.

3. Cycle Detection. (K&T 3.2) Give an algorithm to detect whether a given undirected graph
contains a cycle. If the graph contains a cycle, then your algorithm should output one.
Otherwise, your algorithm should output NO. Your runtime should be O(n+m) for a graph
with m edges and n vertices.

Hint: Don’t forget edge cases. Don’t forget to return the cycle if one is detected.

4. (extra challenge) In class on Wednesday we saw an algorithm for testing bipartiteness
which used BFS to color the vertices. It should be possible to use DFS to test bipartiteness
to color the vertices. Give an algorithm (in pseudocode) which uses DFS to test bipartiteness.
Rigorously prove that your algorithm works.

1



5. (extra challenge) For a positive integer k, call a graph k-colorable if the vertices can be
properly colored using k colors. In other words, a bipartite graph is two-colorable. In this
problem, you will investigate algorithms dealing with three-colorable graphs.

(a) Design and analyze an algorithm which takes as input a graph G = (V,E) and returns
yes if G is three-colorable, and no otherwise.

(b) Design and analyze an efficient algorithm which takes as input a three-colorable graph
G = (V,E) and colors the vertices of the graph using O(

√
n) colors. (Note: while the

input graph is three-colorable, it does not mean that we know what that coloring is!)

2


