
CS41 Homework 3

This homework is due at 11:59pm on Monday, September 20. Write your solution using LATEX.
Submit this homework using as a .tex file on github. This is an individual homework. It’s ok
to discuss approaches at a high level. In fact, you are encouraged to discuss general strategies.
However, you should not reveal specific details of a solution, nor should you show your written
solution to anyone else. The only exception to this rule is work you’ve done with a lab partner
while in lab. In this case, note (in your post-homework survey) who you’ve worked with and
what parts were solved during lab.

The main learning goals of this lab are to work with asymptotic bounds, practice algorithm
analysis, and remember CS35 content. There is a bit of algorithm design, too.

1. Analysis. Let f(n) = 7n4/7 and g(n) = n2/7(log n)5. Prove that g(n) = O(f(n)). You
may use techniques and facts from class and the textbook; your proof should be formal and
complete.

2. Asymptotic rates of growth. Arrange the following functions in ascending order of growth
rate. That is, if g follows f in your list, then it should be the case that f = O(g).

� f1(n) = n3.6

� f2(n) = 1
2n log(n) + 9

� f3(n) = 5 · 10n

� f4(n) = 7n + 3

� f5(n) =
√

4n

No proofs are necessary, just give an ordering.

3. Lots of functions. Let k be a fixed constant and suppose that f1, . . . , fk and h are functions
such that fi(n) is O(h(n)) for all i. (We also write this fi(n) ∈ O(h(n)).)

(a) Let g1(n) = f1(n) + ... + fk(n). Is g1(n) ∈ O(h(n))? Prove or give a counterexam-
ple. If you give a counterexample, give an alternate statement that best captures the
relationship between the two functions.

(b) Let g2(n) = f1(n)·. . .·fk(n). Is g2(n) ∈ O(h(n))? Prove or give a counterexample. If you
give a counterexample, give an alternate statement that best captures the relationship
between the two functions.

4. Close to sorted. Say that a list of numbers is “k-close-to-sorted” if each number in the
list is less than k positions from its actual place in the sorted order. (So a 1-close-to-sorted
list is actually sorted.) Give an O(n log k) algorithm for sorting a list of numbers that is
k-close-to-sorted.

In your algorithm, you may use any data structure or algorithm from CS35 by name, without
describing how it works.

5. (extra challenge) For this problem, your example functions should have domain and range
the positive integers N.

1



� Find (with proof) a function f such that f(2n) is O(f(n)).

� Find (with proof) a function g such that g(2n) is not O(g(n)).

� Find (with proof) a function h such that h(2n) is O(h(n)).

6. (extra challenge) Give a proof or counterexample: If f is not O(g), then g is O(f).

2


