
CS41 Homework 12
This homework is due at 11:59PM on Wednesday, December 8. Note the unusual due date. This is a

14-point homework. Write your solution using LATEX. Submit this homework using github as .tex file. This
is a partnered homework. You should primarily be discussing problems with your homework partner.

It’s ok to discuss approaches at a high level with others. However, you should not reveal specific details
of a solution, nor should you show your written solution to anyone else. The only exception to this rule is
work you’ve done with a lab teammate while in lab. In this case, note (in your homework submission
poll) who you’ve worked with and what parts were solved during lab.

1. Reductions and approximations. Recall that many problems have a decision version and an
optimization version, so for example we can consider the problems

� Independent-Set(G, k) returns yes iff there is an independent set in G of size ≥ k,

� Independent-Set-OPT(G) returns the size of the largest independent set in G,

� Vertex-Cover(G, k) returns yes iff there is a vertex cover of G of size at most k,

� VC-Opt(G) returns the size of the smallest vertex cover of G,

� Clique(G, k) returns yes iff there is a clique in G of size k, and

� Clique-OPT(G) returns the size of the largest clique1 in G.

We know that all NP-complete problems reduce to each other. It would be nice if this meant that an
approximation algorithm for one NP-complete problem can be adapted easily into an equally good
approximation algorithm for any other NP-complete problem.

(a) Our first reduction in class showed that Independent-Set≤P Vertex-Cover. Given an algo-
rithm VC-alg for Vertex-Cover, we created the following algorithm for Independent-Set:

IS-alg (G = (V,E), k):

1 k′ := n− k // where n = |V |
2 z = VC-alg(G, k′).
3 return z.

Now, suppose we want an approximation algorithm for Independent-Set-OPT that uses a 2-
approximation algorithm VC-Approx for VC-Opt. What should your algorithm for Independent-
Set-OPT do? Given the output from VC-Approx, what should your Independent-Set-OPT
algorithm output? What kind of approximation guarantee can you give?

Design and analyze an approximation algorithm for Independent-Set-OPT. Either prove a
formal guarantee for the approximation ratio of your algorithm, or give concrete evidence why
that ratio is impossible (or at least hard to calculate).

(b) Assume we have an k-approximation algorithm for Clique-OPT where k is a constant. Can
we use this to construct a decent approximation algorithm for Independent-Set-OPT? Justify
your answer by designing an approximation algorithm for Independent-Set-OPT, and either
proving an approximation ratio or explaining why this ratio is hard to calculate.

2. Chromatic Number. Consider the optimization problem ChromaticNumber, defined as follows.
Given a graph G = (V,E) as input, determine the smallest number k such that it is possible to k-color
the graph.

(a) Prove that ChromaticNumber is NP-hard.

1A clique is a set of nodes C ⊆ V such that every two vertices u, v ∈ C are connected by an edge: {u, v} ∈ E.

1

(b) Prove that there is no efficient 5
4 -approximation to ChromaticNumber unless P = NP.

(c) Prove that for any 0 < ε < 1/3 there is no efficient 1 + ε-approximation to ChromaticNumber
unless P = NP. Hint: recall that ∀k > 2, k-coloring is NP-complete.

3. Three-Coloring, approximated. Recall the Three-Coloring problem: Given a graph G = (V,E),
output yes iff the vertices in G can be colored using only three colors such that the endpoints of any
edge have different colors. In homework 11, you showed that Three-Coloring is NP-complete. In
this lab, we’ll look at several approximation and randomized algorithms for the optimization version
of Three-Coloring.

Let Three-Coloring-OPT be the following problem. Given a graph G = (V,E) as input, color the
vertices in G using at most three colors in a way that maximizes the number of satisfied edges, where
an edge e = (u, v) is satisfied if u and v have different colors. Given some graph G, let c∗ be the
maximum number of satisfied edges in a 3-coloring of G.

Describe and analyze randomized algorithms for Three-Coloring-OPT with the following behavior:

(a) An algorithm that runs in worst-case (i.e., not expected) polynomial time and produces a three-
coloring such that the expected number of satisfied edges is at least 2c∗/3.

(b) An algorithm with expected polynomial runtime that always outputs a three-coloring that satisfies
at least 2c∗/3 edges.

(c) An algorithm that runs in worst-case polynomial time, and with probability at least 99% outputs
a three-coloring which satisfies at least 2c∗/3 edges. What is the running time of your algorithm?
The following inequality might be helpful: 1− x ≤ e−x for any x > 0.

(Hints: start with a very basic idea. Don’t overthink the algorithm design! The challenge here is doing
the analysis.)

4. (extra challenge) Even more three-coloring.

Give a worst-case polynomial-time (3/2)-approximation algorithm for Three-Coloring-OPT. Your
algorithm must satisfy at least 2c∗/3 edges, where for an arbitrary input G = (V,E), c∗ denotes
the maximum number of satisfiable edges. Your algorithm must be deterministic (i.e., cannot use
randomness). Prove that your algorithm achieves a 3/2 approximation ratio.

(Yes, this algorithm would solve all three parts of problem 3 above without even using randomness.
But problem 3 is asking for algorithms which do use randomness, and this problem is asking for an
algorithm that does not use randomness.)

5. (extra challenge) Even more coloring! . . . with not too many colors.

Suppose we’re somehow told that a graph is three-colorable. Could that help us color the graph? In
this problem, you’ll shoot for a different kind of approximation. Give a polynomial time deterministic
algorithm that, given any three-colorable graph G = (V,E), colors the graph using O(

√
n) colors. Note

that the endpoints of each edge must be different colors, and you’re given that it is possible to color
the graph using just three colors, but you don’t know what the coloring is.

Here are a few hints to help you along:

(a) First, give a simple greedy algorithm that, given a graph G = (V,E) such that each vertex has at
most d neighbors, colors G using only d+ 1 colors.

(b) Second, recall the algorithm for deciding if a graph is bipartite.

(c) Third, start coloring the three-colorable graph taking the vertex with the most neighbors, and
coloring those neighbors using just two colors.

2

