1. **Reductions and approximations.** Recall that many problems have a decision version and an optimization version, so for example we can consider the problems

- \textsc{Independent-Set}(G, k) returns \textsc{yes} if there is an independent set in \(G \) of size \(\geq k \),
- \textsc{Independent-Set-OPT}(G) returns the size of the largest independent set in \(G \),
- \textsc{Vertex-Cover}(G, k) returns \textsc{yes} if there is a vertex cover of \(G \) of size at most \(k \),
- \textsc{VC-OPT}(G) returns the size of the smallest vertex cover of \(G \),
- \textsc{Clique}(G, k) returns \textsc{yes} if there is a clique in \(G \) of size \(k \), and
- \textsc{Clique-OPT}(G) returns the size of the largest clique\(^1\) in \(G \).

We know that all \textsc{NP}-complete problems reduce to each other. It would be nice if this meant that an approximation algorithm for one \textsc{NP}-complete problem can be adapted easily into an equally good approximation algorithm for any other \textsc{NP}-complete problem.

(a) Our first reduction in class showed that \textsc{Independent-Set} \(\leq_p \textsc{Vertex-Cover} \). Given an algorithm \textsc{VC-alg} for \textsc{Vertex-Cover}, we created the following algorithm for \textsc{Independent-Set}:

```plaintext
IS-ALG (G = (V, E), k):
1   \( k' := n - k \) // where \( n = |V| \)
2   \( z = \text{VC-alg}(G, k') \).
3   \text{return} \( z \).
```

Now, suppose we want an approximation algorithm for \textsc{Independent-Set-OPT} that uses a 2-approximation algorithm \textsc{VC-Approx} for \textsc{VC-OPT}. What should your algorithm for \textsc{Independent-Set-OPT} do? Given the output from \textsc{VC-Approx}, what should your \textsc{Independent-Set-OPT} algorithm output? What kind of approximation guarantee can you give?

Design and analyze an approximation algorithm for \textsc{Independent-Set-OPT}. Either prove a formal guarantee for the approximation ratio of your algorithm, or give concrete evidence why that ratio is impossible (or at least hard to calculate).

(b) Assume we have an \(k \)-approximation algorithm for \textsc{Clique-OPT} where \(k \) is a constant. Can we use this to construct a decent approximation algorithm for \textsc{Independent-Set-OPT}? Justify your answer by designing an approximation algorithm for \textsc{Independent-Set-OPT}, and either proving an approximation ratio or explaining why this ratio is hard to calculate.

2. **Chromatic Number.** Consider the optimization problem \textsc{ChromaticNumber}, defined as follows. Given a graph \(G = (V, E) \) as input, determine the smallest number \(k \) such that it is possible to \(k \)-color the graph.

 (a) Prove that \textsc{ChromaticNumber} is \textsc{NP}-hard.

\(^1\)A **clique** is a set of nodes \(C \subseteq V \) such that every two vertices \(u, v \in C \) are connected by an edge: \(\{u, v\} \in E \).
(b) Prove that there is no efficient $\frac{4}{3}$-approximation to CHROMATICNUMBER unless $P = NP$.

(c) Prove that for any $\epsilon > 0$ there is no efficient $1 + \epsilon$-approximation to CHROMATICNUMBER unless $P = NP$. Hint: recall that $\forall k > 2$, k-coloring is NP-COMPLETE.

3. **Three-Coloring, approximated.** Recall the THREE-COLORING problem: Given a graph $G = (V, E)$, output YES iff the vertices in G can be colored using only three colors such that the endpoints of any edge have different colors. In homework 11, you showed that THREE-COLORING is NP-COMPLETE. In this lab, we'll look at several approximation and randomized algorithms for the optimization version of THREE-COLORING.

Let THREE-COLORING-OPT be the following problem. Given a graph $G = (V, E)$ as input, color the vertices in G using at most three colors in a way that maximizes the number of satisfied edges, where an edge $e = (u, v)$ is satisfied if u and v have different colors. Given some graph G, let c^* be the maximum number of satisfied edges in a 3-coloring of G.

Describe and analyze randomized algorithms for THREE-COLORING-OPT with the following behavior:

(a) An algorithm that runs in worst-case (i.e., not expected) polynomial time and produces a three-coloring such that the expected number of satisfied edges is at least $2c^*/3$.

(b) An algorithm with expected polynomial runtime that always outputs a three-coloring that satisfies at least $2c^*/3$ edges.

(c) An algorithm that runs in worst-case polynomial time, and with probability at least 99% outputs a three-coloring which satisfies at least $2c^*/3$ edges. What is the running time of your algorithm? The following inequality might be helpful: $1 - x \leq e^{-x}$ for any $x > 0$.

(Hints: start with a very basic idea. Don’t overthink the algorithm design! The challenge here is doing the analysis.)

4. **(extra challenge) Even more three-coloring.**

Give a worst-case polynomial-time $(3/2)$-approximation algorithm for THREE-COLORING-OPT. Your algorithm must satisfy at least $2c^*/3$ edges, where for an arbitrary input $G = (V, E)$, c^* denotes the maximum number of satisfiable edges. Your algorithm must be deterministic (i.e., cannot use randomness). Prove that your algorithm achieves a $3/2$ approximation ratio.

(Yes, this algorithm would solve all three parts of problem 3 above without even using randomness. But problem 3 is asking for algorithms which do use randomness, and this problem is asking for an algorithm that does not use randomness.)

5. **(extra challenge) Even more coloring! . . . with not too many colors.**

Suppose we’re somehow told that a graph is three-colorable. Could that help us color the graph? In this problem, you’ll shoot for a different kind of approximation. Give a polynomial time deterministic algorithm that, given any three-colorable graph $G = (V, E)$, colors the graph using $O(\sqrt{n})$ colors. Note that the endpoints of each edge must be different colors, and you’re given that it is possible to color the graph using just three colors, but you don’t know what the coloring is.

Here are a few hints to help you along:

(a) First, give a simple greedy algorithm that, given a graph $G = (V, E)$ such that each vertex has at most d neighbors, colors G using only $d + 1$ colors.

(b) Second, recall the algorithm for deciding if a graph is bipartite.

(c) Third, start coloring the three-colorable graph taking the vertex with the most neighbors, and coloring those neighbors using just two colors.