
CS41 Homework 10
This homework is due at 11:59PM on Monday, November 15. Write your solution using LATEX.

Submit this homework using github as .tex file. This is a partnered homework. You should
primarily be discussing problems with your homework partner.

It’s ok to discuss approaches at a high level with others. However, you should not reveal specific
details of a solution, nor should you show your written solution to anyone else. The only exception
to this rule is work you’ve done with a lab teammate while in lab. In this case, note (in your
homework submission poll) who you’ve worked with and what parts were solved during lab.

1. Flow variant. In the standard flow problem, we get an input G = (V,E) a directed graph and
edge capacities ce ≥ 0 limiting how much flow can pass along an edge. Consider the following
two variants of the maximum flow problem. For both parts, your algorithm should be a
reduction to the Ford-Fulkerson algorithm. You should rigorously show that your reduction
is a valid polynomial-time reduction, and correctly solves the original problem. Remember
that the Ford-Fulkerson algorithm returns the entire flow f : E → N, not just a single integer.

(a) It might be that each junction where water pipes meet is limited in how much water
it can handle (no matter how much the pipes can carry). In this case, we want to add
vertex capacities to our problem. The input is a directed G (with source s and sink
t ∈ V ), edge capacities ce ≥ 0, and vertex capacities cv ≥ 0 describing the upper limit
of flow which can pass through that vertex. Give a polynomial-time algorithm to find
the maximum s t flow in a network with both edge and vertex capacities.

(b) It might be that there are multiple sources and multiple sinks in our flow network. In
this case, the input is a directed G, a list of sources {s1, . . . , sx} ⊂ V , a list of sinks
{t1, . . . , ty} ⊂ V , and edge capacities ce ≥ 0.

Give a polynomial-time algorithm to find the maximum flow in a network with multiple
sources and multiple sinks.

2. Hospitals coping with natural disaster. (K&T 7.9)

The same hospitals from earlier in the semester have now hired all the doctors they need.
There is a widespread natural disaster, and a lot of people across an entire region need to be
rushed to emergency medical care. Each person should be brought to a hospital no more than
50 miles away from their current location. Additionally, we want to make sure that no single
hospital is overloaded, so we want to spread the patients across the available hospitals. There
are n people who need medical care and h hospitals; we want to find a way to coordinate
emergency medical evacuations so that each hospital ends up with at most dn/he patients in
emergency care. (Also, obviously: every patient should end up at a hospital!)

Give a polynomial-time algorithm that takes the given information about patients’ locations
and hospitals and determines whether this is possible. If it is possible, your algorithm should
also output an assignment of patients to hospitals ensuring that every patient gets to a nearby
hospital and that no hospital is overloaded. Your algorithm should be a reduction to network
flow.

Prove that your algorithm is correct.

1



3. Optimization vs Decision Problems. Recall that a decision problem requires a yes/no
answer, and an optimization problem requires the “best possible answer”, which often means
maximizing or minimizing over some cost or score.

For most optimization problems, there is an obvious analogue as a decision problem. For
example, consider the following problem:

Vertex-Cover-Opt: Given a graph G = (V,E), return the size of the smallest vertex
cover in G.

Vertex-Cover-Opt has a natural decision problem, namely Vertex-Cover. In fact, every
optimization problem can be converted to a decision problem in this way.

(a) Show that Vertex-Cover≤PVertex-Cover-Opt.

(b) Let B be an arbitrary optimization problem, and let A be the decision version of B.
Show that

A≤PB .

(c) Show that Vertex-Cover-Opt≤PVertex-Cover.

2


