CS41 Homework 1

This homework is due at $11: 59 \mathrm{PM}$ on Monday, September 6. This is a 10 -point homework. Write your solution using $\mathrm{A}^{\mathrm{A}} T_{\mathrm{E}} \mathrm{X}$. Submit this homework using github. This is an individual homework. It's ok to discuss approaches at a high level. In fact, you are encouraged to discuss general strategies. However, you should not reveal specific details of a solution, nor should you show your written solution to anyone else. The only exception to this rule is work you've done with a lab partner while in lab. In this case, note (in your post-homework survey) who you've worked with and what parts were solved during lab.

The main learning goals of this lab are to (i) familiarize you with writing in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, and (ii) to begin to formalize and analyze algorithms.

1. EdStem. Log onto the course forum on EdStem, and either ask a question, or respond to an existing post. Don't feel like your question/post has to be about computer science! The goal is just to make sure you're comfortable using the forum.
2. Algorithm Analysis. Consider the following algorithm for the Hiking Problem.
```
Hiking()
    \(k=1\).
    while you haven't arrived at your friend:
    hike \(k\) miles north
    return to start
    hike \(k\) miles south
    return to start
    \(k=6 k\).
```

Describe the distance traveled in Hiking as a function of the initial distance from your friend in the worst case. Express your answer in big-O notation. How does this algorithm compare to the algorithms we saw in class and lab?
3. Algorithm Design. Choose a problem you encounter in everyday life (e.g. how to get from your dorm room to Sharples by 8:30AM, or how to get into college) and describe an algorithm for solving that problem.
Be as specific and descriptive as you can.
4. (extra challenge problem) We discussed in lab a reason why m is a lower bound for the Hiking Problem. Show that $3 m$ is a lower bound for the Hiking Problem.
5. (extra challenge problem) In lab we argued that updating $k \leftarrow 2 k$ is more efficient than $k \leftarrow k+1$. However, why stop there? Would it be more efficient to increase k even more rapidly? Consider the following algorithm for the Hiking Problem.

```
ExtremeHiking()
    k=2.
    while you haven't arrived at your friend:
3 hike k miles north
4 return to start
5 hike k miles south
6 return to start
7 k= k}\mp@subsup{}{}{2}
```

Again, describe the distance traveled in Hiking as a function of the initial distance from your friend in the worst case. Express your answer in big-O notation. How does this algorithm compare to the algorithms we saw in class?

