CS41 Homework 1

This homework is due at 11:59PM on Monday, September 6. This is a 10-point homework. Write your solution using \LaTeX. Submit this homework using github. This is an individual homework. It’s ok to discuss approaches at a high level. In fact, you are encouraged to discuss general strategies. However, you should not reveal specific details of a solution, nor should you show your written solution to anyone else. The only exception to this rule is work you’ve done with a lab partner while in lab. In this case, note (in your post-homework survey) who you’ve worked with and what parts were solved during lab.

The main learning goals of this lab are to (i) familiarize you with writing in \LaTeX, and (ii) to begin to formalize and analyze algorithms.

1. EdStem. Log onto the course forum on EdStem, and either ask a question, or respond to an existing post. Don’t feel like your question/post has to be about computer science! The goal is just to make sure you’re comfortable using the forum.

2. Algorithm Analysis. Consider the following algorithm for the Hiking Problem.

\begin{verbatim}
Hiking()
1 k = 1.
2 while you haven’t arrived at your friend:
3 hike k miles north
4 return to start
5 hike k miles south
6 return to start
7 k = 6k.
\end{verbatim}

Describe the distance traveled in Hiking as a function of the initial distance from your friend in the worst case. Express your answer in big-O notation. How does this algorithm compare to the algorithms we saw in class and lab?

3. Algorithm Design. Choose a problem you encounter in everyday life (e.g. how to get from your dorm room to Sharples by 8:30AM, or how to get into college) and describe an algorithm for solving that problem. Be as specific and descriptive as you can.

4. (extra challenge problem) We discussed in lab a reason why \(m \) is a lower bound for the Hiking Problem. Show that \(3m \) is a lower bound for the Hiking Problem.

5. (extra challenge problem) In lab we argued that updating \(k \leftarrow 2k \) is more efficient than \(k \leftarrow k + 1 \). However, why stop there? Would it be more efficient to increase \(k \) even more rapidly? Consider the following algorithm for the Hiking Problem.
ExtremeHiking()
1 \(k = 2 \).
2 while you haven’t arrived at your friend:
3 hike \(k \) miles north
4 return to start
5 hike \(k \) miles south
6 return to start
7 \(k = k^2 \).

Again, describe the distance traveled in HIKING as a function of the initial distance from your friend in the worst case. Express your answer in big-O notation. How does this algorithm compare to the algorithms we saw in class?