
CS41 Lab 7
October 21, 2019

The lab problems this week focus on divide and conquer algorithms. The purpose of this lab is to
gain practice using the divide and conquer approach to solving problems.

1. Divide and conquer minimum spanning trees?

Lila has a really cool idea for a divide and conquer algorithm which will find a MST. Given
a connected, undirected graph G = (V,E) with weighted edges, Lila’s algorithm does the
following:

• Divides the graph into two pieces, G1 = (V1, E1) and G2 = (V2, E2). (V1 ∪ V2 = V and
V1 and V2 are disjoint. E1 is the edges in E with both endpoints in V1, and E2 is the
edges in E with both endpoints in V2.)

• Recursively finds the MSTs M1 for G1 and M2 for G2.

• Finds the lowest-weight edge e = (u, v) with u ∈ V1 and v ∈ V2.

• Returns the minimum spanning tree M1 ∪M2 ∪ {e}.

Unfortunately, this algorithm does not work. Give an example input graph G with weights
and describe a run of this algorithm where the algorithm does not return a minimum spanning
tree on G.

2. You are interested in analyzing some hard-to-obtain data from two separate databases. Each
database contains n numerical values (so there are 2n values total). You’d like to determine
the median of this set of 2n values, defined as the n-th smallest value.

The only way you can access these values is through queries to the databases. In a single
query, you can specify a value k to one of the two databases, and the chosen database will
return the k-th smallest value it contains. Since queries are expensive, you would like to
compute the median using as few queries as possible.

• Design an algorithm that finds the median value using at most O(log n) queries. Full
pseudocode is not necessary, but you must clearly explain how it works, and you must
handle all edge cases; e.g., do not assume that n is even.

• Show that your algorithm correctly returns the median.

• Prove that your algorithm uses only O(log n) queries.

3. Solve the following recurrence relation (i) using partial substitution, and (ii) using recursion
trees.

T (n) = 4T (n/3) + 5n , for all n > 3

T (3) = 5

1


