$\mathrm{CS41}\ \mathrm{Lab}\ 2$

September 9, 2019

In typical labs this semester, you'll be working on a number of problems in groups of 3-4 students. You will not be handing in solutions; the primary purpose of these labs is to have a low-pressure space to discuss algorithm design. However, it will be common to have some overlap between lab exercises and homework sets.

Note: If you do not feel fully confident when it comes to proof using induction, I strongly encourage you to focus on the initial problem first.

1. Induction. Using induction, show that the following summations hold for all $n \ge 0$.

•
$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$$
.
• $\sum_{k=0}^{n} 2^{k} = 2^{n+1} - 1$.
• for all positive $c \neq 1$, $\sum_{k=0}^{n} c^{k} = \frac{c^{n+1} - 1}{c - 1}$.

- 2. Asymptotic analysis. Assume you have functions f and g such that f(n) is O(g(n)). For each of the following statements, decide whether you think it is true or false and give a proof or counterexample.
 - (a) $\log_2(f(n))$ is $O(\log_2(g(n)))$.
 - (b) $2^{f(n)}$ is $O(2^{g(n)})$.
 - (c) $(f(n))^2$ is $O((g(n))^2)$.
 - (d) If g(n) is O(h(n)), then f(n) is O(h(n)).
 - (e) g(n) is $\Omega(f(n))$.