CS41 Lab 2

September 9, 2019

In typical labs this semester, you'll be working on a number of problems in groups of 3-4 students. You will not be handing in solutions; the primary purpose of these labs is to have a low-pressure space to discuss algorithm design. However, it will be common to have some overlap between lab exercises and homework sets.

Note: If you do not feel fully confident when it comes to proof using induction, I strongly encourage you to focus on the initial problem first.

1. Induction. Using induction, show that the following summations hold for all $n \geq 0$.

- $\sum_{k=0}^{n} k=\frac{n(n+1)}{2}$.
- $\sum_{k=0}^{n} 2^{k}=2^{n+1}-1$.
- for all positive $c \neq 1, \sum_{k=0}^{n} c^{k}=\frac{c^{n+1}-1}{c-1}$.

2. Asymptotic analysis. Assume you have functions f and g such that $f(n)$ is $O(g(n))$. For each of the following statements, decide whether you think it is true or false and give a proof or counterexample.
(a) $\log _{2}(f(n))$ is $O\left(\log _{2}(g(n))\right)$.
(b) $2^{f(n)}$ is $O\left(2^{g(n)}\right)$.
(c) $(f(n))^{2}$ is $O\left((g(n))^{2}\right)$.
(d) If $g(n)$ is $O(h(n))$, then $f(n)$ is $O(h(n))$.
(e) $g(n)$ is $\Omega(f(n))$.
