## CS41 Lab 13

December 22019

This week, we'll continue exploring NP-COMPLETE decision problems, and develop approximation algorithms for related versions of those problems.

## 1. The hardness of Three-Coloring-OPT

Recall the Three-Coloring problem: Given a graph $G=(V, E)$, output yes iff the vertices in $G$ can be colored using only three colors such that the endpoints of any edge have different colors. We know that Three-Coloring is NP-Complete. But what about the optimization version of Three-Coloring?

Let Three-Coloring-OPT be the following problem. Given a graph $G=(V, E)$ as input, color the vertices in $G$ using at most three colors in a way that maximizes the number of satisfied edges, where an edge $e=(u, v)$ is satisfied if $u$ and $v$ have different colors.
Show that if there is a polynomial-time algorithm for Three-Coloring-OPT then $\mathrm{P}=\mathrm{NP}$.
2. Traveling Salesman Problem. In this problem, a salesman travels the country making sales pitches. The salesman must visit $n$ cities and then return to her home city, all while doing so as cheaply as possible.

The input is a complete graph $G=(V, E)$ along with nonnegative edge costs $\left\{c_{e}: e \in E\right\}$. A tour is a simple cycle $\left(v_{j_{1}}, \ldots, v_{j_{n}}, v_{j_{1}}\right)$ that visits every vertex exactly once. ${ }^{1}$ The goal is to output the minimum-cost tour.
For many TSP applications (such as when the cost is proportional to the distance between two cities), it makes sense for the edges to obey the triangle inequality: for every $i, j, k$, we have

$$
c_{(i k)} \leq c_{(i j)}+c_{(j k)} .
$$

This version is often called Metric-TSP.
The (decision version of the) Traveling Salesman Problem is NP-Complete. For this problem, you will develop a 2 -approximation algorithm for Metric-TSP.
(a) First, to gain some intuition, consider the following graph:

[^0]
(b) On your own try to identify a cheap tour of the graph.
(c) Build some more intuition by computing the minimum spanning tree (MST) of the graph. Let $T$ be your minimum spanning tree.
(d) Let OPT be the cheapest tour. Show that its cost is bounded below by the cost of the MST: $\operatorname{cost}(T) \leq \operatorname{cost}(O P T)$.
(e) Give an algorithm which returns a tour $A$ which costs at most twice the cost of the MST: $\operatorname{cost}(A) \leq 2 \operatorname{cost}(T)$.
(f) Conclude that your algorithm is a 2 -approximation for METRIC-TSP.
3. Optimization vs Decision Problems. Recall that a decision problem requires a Yes/no answer, and an optimization problem requires the "best possible answer", which often means maximizing or minimizing over some cost or score.
For most optimization problems, there is an obvious analogue as a decision problem. Namely, the decision problem takes an additional input $k$ and outputs YES iff the input has an feasible solution of score at most $k$ (for a minimization problem) or at least $k$ (for a maximization problem) For example, consider the following problem:

Min-Vertex-Cover: Given a graph $G=(V, E)$, return the size of the smallest vertex cover in $G$.

Min-Vertex-Cover has a natural decision problem, namely Vertex-Cover. In fact, every optimization problem can be converted to a decision problem in this way.
(a) Show that Vertex-Cover $\leq_{\mathrm{P}}$ Min-Vertex-Cover.
(b) Let $B$ be an arbitrary optimization problem, and let $A$ be the decision version of $B$. Show that

$$
A \leq_{\mathrm{P}} B
$$

(c) Show that Min-Vertex-Cover $\leq \mathrm{p}$ Vertex-Cover.


[^0]:    ${ }^{1}$ except for the start vertex, which we visit again to complete the cycle

