
CS41 Lab 13
December 2 2019

This week, we’ll continue exploring NP-complete decision problems, and develop approximation
algorithms for related versions of those problems.

1. The hardness of Three-Coloring-OPT

Recall the Three-Coloring problem: Given a graph G = (V,E), output yes iff the vertices
in G can be colored using only three colors such that the endpoints of any edge have different
colors. We know that Three-Coloring is NP-Complete. But what about the optimization
version of Three-Coloring?

Let Three-Coloring-OPT be the following problem. Given a graph G = (V,E) as input,
color the vertices in G using at most three colors in a way that maximizes the number of
satisfied edges, where an edge e = (u, v) is satisfied if u and v have different colors.

Show that if there is a polynomial-time algorithm for Three-Coloring-OPT then P = NP.

2. Traveling Salesman Problem. In this problem, a salesman travels the country making
sales pitches. The salesman must visit n cities and then return to her home city, all while
doing so as cheaply as possible.

The input is a complete graph G = (V,E) along with nonnegative edge costs {ce : e ∈ E}. A
tour is a simple cycle (vj1 , . . . , vjn , vj1) that visits every vertex exactly once.1 The goal is to
output the minimum-cost tour.

For many TSP applications (such as when the cost is proportional to the distance between
two cities), it makes sense for the edges to obey the triangle inequality : for every i, j, k, we
have

c(ik) ≤ c(ij) + c(jk).

This version is often called Metric-TSP.

The (decision version of the) Traveling Salesman Problem is NP-Complete. For this prob-
lem, you will develop a 2-approximation algorithm for Metric-TSP.

(a) First, to gain some intuition, consider the following graph:

1except for the start vertex, which we visit again to complete the cycle

1



a

b

c d

e

17

14 21

15

22

19 25

13

18

20

(b) On your own try to identify a cheap tour of the graph.

(c) Build some more intuition by computing the minimum spanning tree (MST) of the graph.
Let T be your minimum spanning tree.

(d) Let OPT be the cheapest tour. Show that its cost is bounded below by the cost of the
MST: cost(T ) ≤ cost(OPT ).

(e) Give an algorithm which returns a tour A which costs at most twice the cost of the
MST: cost(A) ≤ 2 cost(T ).

(f) Conclude that your algorithm is a 2-approximation for Metric-TSP.

3. Optimization vs Decision Problems. Recall that a decision problem requires a yes/no
answer, and an optimization problem requires the “best possible answer”, which often means
maximizing or minimizing over some cost or score.

For most optimization problems, there is an obvious analogue as a decision problem. Namely,
the decision problem takes an additional input k and outputs yes iff the input has an feasible
solution of score at most k (for a minimization problem) or at least k (for a maximization
problem) For example, consider the following problem:

Min-Vertex-Cover: Given a graph G = (V,E), return the size of the smallest vertex
cover in G.

Min-Vertex-Cover has a natural decision problem, namely Vertex-Cover. In fact, every
optimization problem can be converted to a decision problem in this way.

(a) Show that Vertex-Cover≤PMin-Vertex-Cover.

(b) Let B be an arbitrary optimization problem, and let A be the decision version of B.
Show that

A≤PB .

(c) Show that Min-Vertex-Cover≤PVertex-Cover.

2


