This week, we’ve been discussing ways to classify problems according to their difficulty, using the notions of polynomial-time reductions and polynomial-time verifiers. In this lab, you’ll develop more sophisticated polynomial-time reductions using gadgets.

Below is a synopsis of relevant decision problems for this lab.

- **SAT.** The input for SAT is a set of \(n \) boolean variables \(x_1, \ldots, x_n \) and \(m \) clauses \(c_1, \ldots, c_m \), where each clause is the OR of one or more literals\(^1\) e.g. \(c_i = x_1 \lor \bar{x}_2 \lor x_3 \lor \bar{x}_{17} \). Output YES iff there is a truth assignment to \(x_1, \ldots, x_n \) that satisfies every clause.

- **3-Sat.** The input for 3-Sat is the same as for SAT, except that each clause is the OR of exactly three literals.

- **Three-Coloring.** The input for Three-Coloring is a graph \(G = (V, E) \). Output YES iff the vertices can be colored using three colors such that each edge has different-colored endpoints.

1. In the first exercise, you will reduce \(3\text{-Sat} \leq_p \text{Three-Coloring} \). Before getting there, it will be helpful to create some interesting three-colorable graphs. In all of the following exercises, you are to create a three-colorable graph (say the colors are red, blue, green) with certain special properties. The graphs you create should include three vertices marked \(a, b, c \) but can (and often will) include other vertices. Except for the properties specified, these vertices should be unconstrained. For example, unless the problem states that e.g. \(a \) cannot be red, it must be possible to color the graph in such a way that \(a \) is red. (You may fix colors for other vertices, just not \(a, b, c \), and not in a way that constrains the colors of \(a, b, c \).)

 (a) Create a graph such that \(a, b, c \) all have different colors.

 (b) Create a graph such that \(a, b, c \) all have the same color.

 (c) Create a graph such that \(a, b, c \) do NOT all have the same color.

 (d) Create a graph such that none of \(a, b, c \) can be green.

 (e) Create a graph such that none of \(a, b, c \) are green, and they cannot all be blue.

2. Show that \(3\text{-Sat} \leq_p \text{Three-Coloring} \). (Hint: Associate the color red with True and the color blue with False.)

3. Show that \(\text{Three-Coloring} \in \text{NP-Complete} \).

4. Show that \(\text{Sat} \leq_p 3\text{-Sat} \).

\(^1\)A literal is either a boolean variable \(x_i \) or its negation \(\bar{x}_i \).