CS41 Homework 8

This homework is due at 10:00PM on Sunday, November 10. Write your solution using \LaTeX. Submit this homework using github as a .tex file. This is a partnered homework. You should primarily be discussing problems with your homework partner.

It’s ok to discuss approaches at a high level with others. However, you should not reveal specific details of a solution, nor should you show your written solution to anyone else. The only exception to this rule is work you’ve done with a lab partner while in lab. In this case, note (in your homework submission poll file) who you’ve worked with and what parts were solved during lab.

1. **Longest Common Subsequence.** A subsequence in a string is a sequence of letters that appears in the same order, but not necessarily contiguously. For example, “alg”, “arhm”, “goth”, and “loihm” are all subsequences of “algorithms”, but “xyz”, “algog”, “gla”, and “rihtms” are not subsequences.

A common subsequence between two strings \(a, b \) is a string \(c \) that is a subsequence of both \(a \) and \(b \). For many applications including in computational biology, we would like a way of finding the largest common subsequence between two strings.

Design an algorithm that takes as input two \(n \)-character strings \(a, b \) and returns the size of the largest common subsequence between them.

2. **Flow variant.** In the standard flow problem, we get an input \(G = (V, E) \) a directed graph and edge capacities \(c_e \geq 0 \) limiting how much flow can pass along an edge. Consider the following two variants of the maximum flow problem.

 (a) It might be that each junction where water pipes meet is limited in how much water it can handle (no matter how much the pipes can carry). In this case, we want to add vertex capacities to our problem. The input is a directed \(G \) (with source \(s \) and sink \(t \in V \)), edge capacities \(c_e \geq 0 \), and vertex capacities \(c_v \geq 0 \) describing the upper limit of flow which can pass through that vertex. Give a polynomial-time algorithm to find the maximum \(s \to t \) flow in a network with both edge and vertex capacities.

 (b) It might be that there are multiple sources and multiple sinks in our flow network. In this case, the input is a directed \(G \), a list of sources \(\{s_1, \ldots, s_x\} \subset V \), a list of sinks \(\{t_1, \ldots, t_y\} \subset V \), and edge capacities \(c_e \geq 0 \).

 Give a polynomial-time algorithm to find the maximum flow in a network with multiple sources and multiple sinks.

3. **Advertising contracts** (K& T 7.16)

 Back in the euphoric early days of the Web, people liked to claim that much of the enormous potential in a company like Yahoo! was in the “eyeballs”—the simple fact that millions of people look at its pages every day. Further, by convincing people to register personal data with the site, a site like Yahoo! can show each user an extremely targeted advertisement whenever the user visits the site, in a way that TV networks or magazines couldn’t hope to match. So if a user has told Yahoo! that she is a 21-year-old computer science major at Swarthmore, the site can present a banner ad for apartments in Philadelphia suburbs; on the other hand, if she is a 50-year-old investment banker from Greenwich, CT, the site can display a banner ad pitching luxury cars instead.

 But deciding on which ads to show to which people involves some serious computation behind the scenes. Suppose that the managers of a popular site have identified \(k \) distinct demographic groups \(G_1, G_2, \ldots, G_k \). (Some may overlap.) The site has contracts with \(m \) different advertisers to show a certain number of copies of their ads to users of the site. Here’s what a contract with the \(i \)th advertiser looks like:
• For a subset $X_i \subseteq \{G_1, \ldots, G_k\}$ of the demographic groups, advertiser i wants ads shown only to users who belong to at least one of the groups listed in X_i.

• For a number r_i, advertiser i want its ads shown to at least r_i users each minute.

Consider the problem of designing a good advertising policy — a way to show a single ad to each user of the site. (Imagine a world where each user saw only one ad per site.) Suppose at a given minute, there are n users visiting the site. Because we have registration about each of the users, we know that user j belongs to a subset U_j of the demographic groups.

The problem is: is there a way to show a single ad to each user so that the site’s contracts with each of the m advertisers is satisfied for this minute?

Give an efficient algorithm to decide if this is possible, and if so, to actually choose an ad to show each user.