CS41 Lab 9

November 122018
The lab this week focuses on network flow. The purpose of this lab is to gain practice thinking about the Ford-Fulkerson algorithm and using this technique to solve problems.

1. Maximum flow. Find the maximum flow from s to t and the minimum cut between s and t in the network below. Show the residual network at intermediate steps as you build the flow.

2. Flow variant. In the standard flow problem, we get an input $G=(V, E)$ a directed graph and edge capacities $c_{e} \geq 0$ limiting how much flow can pass along an edge. Consider the following two variants of the maximum flow problem.
(a) It might be that each junction where water pipes meet is limited in how much water it can handle (no matter how much the pipes can carry). In this case, we want to add vertex capacities to our problem. The input is a directed G (with source s and $\operatorname{sink} t \in V$), edge capacities $c_{e} \geq 0$, and vertex capacities $c_{v} \geq 0$ describing the upper limit of flow which can pass through that vertex. Give a polynomial-time algorithm to find the maximum $s \rightsquigarrow t$ flow in a network with both edge and vertex capacities.
(b) It might be that there are multiple sources and multiple sinks in our flow network. In this case, the input is a directed G, a list of sources $\left\{s_{1}, \ldots, s_{x}\right\} \subset V$, a list of sinks $\left\{t_{1}, \ldots, t_{y}\right\} \subset V$, and edge capacities $c_{e} \geq 0$.
Give a polynomial-time algorithm to find the maximum flow in a network with multiple sources and multiple sinks.

3. Bipartite Matching

Recall that a bipartite graph $G=(V, E)$ is an undirected graph where the vertices can be partitioned into $X, Y \subset V$, where $X \cap Y=\emptyset$ and $X \cup Y=V$, such that all edges have one end in X and the other in Y, that is $\forall(u, v) \in E, u \in X \wedge v \in Y$. A matching M in G is a subset of the edges $M \subseteq E$ such that each node appears in at most one edge of M. The bipartite matching problem is to find the matching M in bipartite graph G with maximum possible size. Give an efficient algorithm for bipartite matching.

4. Advertising contracts (K\& T 7.16)

Back in the euphoric early days of the Web, people liked to claim that much of the enormous potential in a company like Yahoo! was in the "eyeballs"-the simple fact that millions of people look at its pages every day. Further, by convincing people to register personal data with the site, a site like Yahoo! can show each user an extremely targeted advertisement whenever the user visits the site, in a way that TV networks or magazines couldn't hope to match. So if a user has told Yahoo! that she is a 21-year-old computer science major at Swarthmore, the site can present a banner ad for apartments in Philadelphia suburbs; on the other hand, if she is a 50-year-old investment banker from Greenwich, CT, the site can display a banner ad pitching luxury cars instead.

But deciding on which ads to show to which people involves some serious computation behind the scenes. Suppose that the managers of a popular site have identified k distinct demographic groups $G_{1}, G_{2}, \ldots, G_{k}$. (Some may overlap.) The site has contracts with m different advertisers to show a certain number of copies of their ads to users of the site. Here's what a contract with the $i^{\text {th }}$ advertiser looks like:

- For a subset $X_{i} \subseteq\left\{G_{1}, \ldots, G_{k}\right\}$ of the demographic groups, advertiser i wants ads shown only to users who belong to at least one of the groups listed in X_{i}.
- For a number r_{i}, advertiser i want its ads shown to at least r_{i} users each minute.

Consider the problem of designing a good advertising policy - a way to show a single ad to each user of the site. (Imagine a world where each user saw only one ad per site.) Suppose at a given minute, there are n users visiting the site. Because we have registration about each of the users, we know that user j belongs to a subset U_{j} of the demographic groups.
The problem is: is there a way to show a single ad to each user so that the site's contracts with each of the m advertisers is satisfied for this minute?
Give an efficient algorithm to decide if this is possible, and if so, to actually choose an ad to show each user.

