
CS41 Lab 8
November 5 2018

The lab this week focuses on dynamic programming. The purpose of this lab is to gain practice using
this technique to solve problems. This includes getting some hands-on experience with dynamic
programming implementations.

General Hints:

• Initially focus on the first two steps of the dynamic programming process. Don’t stress about
pseudocode until after you’ve solved all lab problems.

• Focus on the choice you might make to construct an optimal solution.

1. Testing RNA Substructure Implementations. Last week we introduced the RNA Sub-
structure Problem and developed an efficient algorithm for RNA Substructure that uses dy-
namic programming. In this lab problem, you’ll see this solution in practice.

In /home/brody/public/cs41, you’ll find two executables: rna-A, and rna-B. One uses
dynamic programming to solve the RNA Substructure problem, and one solves it without
storing solutions to overlapping subproblems in a table. Each implementation takes in the
name of a file containing a single string representing an RNA molecule, and returns the size
of the largest matching (following the RNA Substructure rules discussed in class).

For this exercise, you’ll use the UNIX time command to examine the runtime of each imple-
mentation. For example, to measure how much time rna-A takes on input rna test data/test1,
execute

$ time /home/brody/public/cs41/rna-A /home/brody/public/cs41/rna test data/test1

(a) Using the test files in rna test data and your own test files, determine which program
uses dynamic programming and which does not.

(b) How large can the inputs be? For both rna-A and rna-B, create input files of
different sizes and determine how large the input can be if the implementation must run
in at most 30 seconds.

(c) How does the runtime scale? Again for each implementation, create some test files
of different lengths, and measure the execution time and how it scales with the size of
the inputs. Use this to guess what the implementation’s runtime is. Is rna-A an O(n2)
algorithm? O(n3) or O(n4)? O(2n)? Do the same for rna-B.

2. Subset Sum. Given an integer weight threshold W > 0 and a list of n items {1, . . . , n} each
with nonnegative weight wi, output a set of items S ⊆ {1, . . . , n} such that

∑
i∈S wi is as

large as possible, subject to
∑

i∈S wi ≤W .

3. Shortest Paths with Negative Cycles. Let G = (V,E) be a directed graph with edge
costs {ce : e ∈ E}. Earlier in the semester we saw that Dijkstra’s Algorithm can be used
to compute the length of the shortest path between nodes s and t when the path costs are
nonnegative.

1

Design a dynamic program that produces the minimum cost path between s and t when the
edge costs can be negative. You can assume that there are no cycles in G with negative total
cost.

4. Longest Palindrome. Let Σ be a finite set called an alphabet. (For example, Σ can be
{0, 1} or {a, b, c, . . . , z}.)
A palindrome is a string which reads the same backwards and forwards. Let s be a string of
characters from Σ and let c ∈ Σ be some character. The reversal of s is denoted sR. Then
the strings ssR (that is, s concatenated with sR) and scsR are both palindromes.

(a) Give a dynamic programming algorithm that takes a string x of characters from Σ,
of length |x| = n, and returns the length of the longest palindrome contained in x
(the longest palindrome that is a substring of x). Your algorithm should run in time
asymptotically better than O(n3).

(b) Modify your algorithm so that it also returns the longest palindrome in x (not just its
length).

2

