
CS41 Lab 5
October 8 2018

The lab problems this week center around greedy algorithms for some graph problems, and on data
structures for implementing these algorithms. Most of you have seen one or more of these problems
before. The purpose of this lab is to (1) practice/develop skills to show that greedy algorithms
work optimally, and (2) to explore the connection between algorithms and data structures.

Some notation reminders: A tree is an undirected graph that is connected and acyclic. Given
a graph G = (V,E), a spanning tree for G is a graph G′ = (V, T ) such that T ⊆ E and G′ is a
tree. (It is also common to refer to T as the spanning tree). Suppose your graph has edge weights:
{we : e ∈ E}. The cost of a spanning tree T equals

∑
e∈T we. A minimum spanning tree is a

spanning tree of minimal cost.
In the Minimum Spanning Tree (MST) problem, you are given a connected (undirected) graph

G = (V,E) with edge weights {we : e ∈ E}, and you must compute and output a minimum spanning
tree T for G.

Recall these two greedy MST algorithms:

• Prim’s algorithm: Maintain a set of connected nodes S. Each iteration, choose the cheapest
edge (u, v) that has one endpoint in S and one endpoint in V \ S.

• Kruskal’s algorithm: Start with an empty set of edges T . Each iteration, add the cheapest
edge from E that would not create a cycle in T .

Recall the Cut Property:

Let G = (V,E) be a connected graph, with distinct edge weights {we : e ∈ E}. Let
S be a nonempty subset of V , and suppose that e = (u, v) is the cheapest edge with
u ∈ S, v ∈ V \ S. Then, every MST contains the edge e.

1. Minimum Spanning Trees: Correctness. Assuming the Cut Property, prove that
Kruskal’s Algorithm correctly returns a Minimum Spanning Tree.

2. Minimum Spanning Trees: Implementation. Implementation details matter a lot in
considering which of these algorithms to use.

(a) What is the asymptotic running time of Prim’s algorithm?
If you were to implement it (in, say, C++) what data structures would you need? Would
you need any additional data structures beyond structures you’ve seen from CS35? If
so, try to design an implementation for them.

(b) What is the asymptotic running time of Kruskal’s algorithm?
If you were to implement it (in, say, C++) what data structures would you need? Be
specific. Would you need any additional data structures beyond structures you’ve seen
from CS35? If so, try to design an implementation for them.

In either case, provide sufficiently detailed pseudocode that the asymptotic runtime is clear,
given the data structures you use.

1



3. Minimum Spanning Trees: edge weights. In this problem, you’ll consider what happens
with MSTs when edge costs are not distinct. If edge weights are not distinct then there might
be two edges which are tied: both have the smallest weight. What happens to these edges
when it comes to MSTs? e.g. do both have to be in the MST?

(a) Given a connected undirected graph G with edge weights from the set {1, 2, 3, 4, 5}, is
there a minimum spanning tree that does not contain some edge e of weight 1 (the
minimum weight)?
If yes, give a graph where this is true. If no, argue why it is not true.

(b) Given a connected undirected graph G with edge weights from the set {1, 2, 3, 4, 5}, is
there a minimum spanning tree that does contain some edge e of weight 5 (the maximum
weight)?
If yes, give a graph where this is true. If no, argue why it is not true.

(c) The problem with our cut property seems to be that when edge weights are not distinct,
it does not say which edge should be in a minimum spanning tree. Rewrite the cut
property so that it covers the case where edge weights are not distinct. (If there is not
necessarily a single edge of minimum weight, then what should the cut property say?)

(d) Use your new version of the cut property to prove that Prim’s algorithm returns a
minimal spanning tree, in the case when edge weights are not distinct.

4. Making change with coins. Consider the problem of making change for n cents out of the
fewest number of coins. Assume that n and the coin values are positive integers (cents).

(a) Describe a greedy algorithm to solve the problem using the US coin denominations of
quarters (25), dimes (10), nickels (5), and pennies (1). Prove your algorithm is optimal.

(b) Suppose the country of Algorithmland uses denominations that are powers of c for some
integer c. This country uses k+1 denominations of c0, c1, . . . , ck. Show that your greedy
algorithm works in Algorithmland as well.

5. A simpler party planning problem. There are n boolean variables x1, x2, . . . , xn. A
literal is either a variable xi or its negation x̄i. A 2-constraint consists of the OR of two
literals f ∨ g. Think of each variable as a person, a literal as a decision (invite Bob or don’t
invite Bob?), and a constraint as a description of what the party host wants in terms of
invitations (e.g. xi ∨ x̄j means invite i or don’t invite j).

An assignment sets truth values for each variable. For example, if n = 3, one such assignment
is {x1 = True, x2 = False, x3 = True}. An assignment A satisfies a constraint f ∨ g if at
least one of the literals f or g is satisfied. For example, xi∨ x̄j is satisfied if either xi = True
or xj = False (or both).

Give a linear-time algorithm that takes a list of n variables and m 2-constraints and produces
a satisfying assignment or returns that no such assignment exists.

Hint: convert the input into a graph, then develop a greedy algorithm to find the satisfying
assignment.

2


