## CS41 Lab 3

September 24, 2018

The lab and homework this week center on graph algorithms for undirected graphs. The following definitions might be helpful/relevant.

- A path $P$ on a graph $G=(V, E)$ is a sequence of vertices $P=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$ for all $1 \leq i<k$.
- A path is simple if all vertices are distinct.
- The length of a path $P=\left(v_{1}, \ldots, v_{k}\right)$ equals $k-1$. (Think of the path length as the number of edges needed to get from $v_{1}$ to $v_{k}$ on this path).
- A cycle is a sequence of vertices $\left(v_{1}, \ldots, v_{k}\right)$ such that $v_{1}, \ldots, v_{k-1}$ are all distinct and $v_{k}=v_{1}$. A cycle is odd (even) if it contains an odd (even) number of edges.

1. Testing Bipartiteness. Call a graph $G=(V, E)$ bipartite if you can partition $V$ into sets $A$ and $B$ such that all edges $e \in E$ have one vertex in $A$, one in $B$. Design an analyze an algorithm to test a graph for bipartiteness.
Hint: An alternate definition is that $G=(V, E)$ is bipartite if you can color vertices in $V$ by one of two colors so that each edge is bichromatic: for any $\{u, v\} \in E$, vertex $u$ is a different color from vertex $v$.
2. Connectivity. A graph $G=(V, E)$ is connected if there is a path between any two vertices. Design an algorithm to detect whether an undirected graph is connected. Your algorithm should return YES if the graph is connected; otherwise, return NO. Provide low-level pseudocode. Your algorithm should run in $O(m+n)$ time on a graph with $n$ vertices and $m$ edges.
3. Testing Tripartiteness. Call a graph $G=(V, E)$ tripartite if $V$ can be partitioned into disjoint sets $A, B, C$ such that for any edge $\{u, v\} \in E$, the vertices $u, v$ lie in different sets. Design and analyze an algorithm to test a graph for tripartiteness.
