The lab and homework this week center on graph algorithms for undirected graphs. The following definitions might be helpful/relevant.

- A path \(P \) on a graph \(G = (V, E) \) is a sequence of vertices \(P = (v_1, v_2, \ldots, v_k) \) such that \(\{v_i, v_{i+1}\} \in E \) for all \(1 \leq i < k \).

- A path is simple if all vertices are distinct.

- The length of a path \(P = (v_1, \ldots, v_k) \) equals \(k - 1 \). (Think of the path length as the number of edges needed to get from \(v_1 \) to \(v_k \) on this path).

- A cycle is a sequence of vertices \((v_1, \ldots, v_k) \) such that \(v_1, \ldots, v_{k-1} \) are all distinct and \(v_k = v_1 \). A cycle is odd (even) if it contains an odd (even) number of edges.

1. **Testing Bipartiteness.** Call a graph \(G = (V, E) \) bipartite if you can partition \(V \) into sets \(A \) and \(B \) such that all edges \(e \in E \) have one vertex in \(A \), one in \(B \). Design an algorithm to test a graph for bipartiteness.

 Hint: An alternate definition is that \(G = (V, E) \) is bipartite if you can color vertices in \(V \) by one of two colors so that each edge is bichromatic: for any \(\{u, v\} \in E \), vertex \(u \) is a different color from vertex \(v \).

2. **Connectivity.** A graph \(G = (V, E) \) is connected if there is a path between any two vertices. Design an algorithm to detect whether an undirected graph is connected. Your algorithm should return YES if the graph is connected; otherwise, return NO. Provide low-level pseudocode. Your algorithm should run in \(O(m + n) \) time on a graph with \(n \) vertices and \(m \) edges.

3. **Testing Tripartiteness.** Call a graph \(G = (V, E) \) tripartite if \(V \) can be partitioned into disjoint sets \(A, B, C \) such that for any edge \(\{u, v\} \in E \), the vertices \(u, v \) lie in different sets. Design and analyze an algorithm to test a graph for tripartiteness.